2550 HW 7 Part 1 Solutions

() (a) C₁, C₂, C₃ are real numbers $= \left\{ c_{1} < 0, 17 + c_{2} < 1, 17 + c_{3} (-3, 2) \right\}$ example vectors in the above span: Five $|\cdot\langle 0, | \rangle + |\cdot\langle 1, | \rangle + |\cdot\langle -3, 2 \rangle = \langle -2, 4 \rangle$ $0 < \langle 0, 1 \rangle + 0 < \langle 1, 1 \rangle + 0 < \langle -3, 2 \rangle = \langle 0, 0 \rangle$ $|0,\langle 0,1\rangle + \pi \langle 1,1\rangle + 0,\langle -3,2\rangle = \langle \pi,\pi+1_0\rangle$ $0 \cdot \langle 0, |7 + | \cdot \langle |, |7 - 5 \cdot \langle -3, 27 = \langle |6, -9 \rangle$ $2 \cdot \langle 0, 17 - 1 \cdot \langle 1, 17 + 1 \cdot \langle -3, 27 = \langle -4, 37 \rangle$

()(b)Span ({<0,-2,2>,<1,3,-1>}) $= \left\{ C_{1} < 0, -2, 2 \right\} + C_{2} < 1, 3, -1 \right\} = \left\{ C_{1}, C_{2} \in \mathbb{R} \right\}$ Five example vectors in the above span: $0:\langle 0,-2,2 \rangle + 0:\langle 1,3,-1 \rangle = \langle 0,0,0 \rangle$ $|\langle 0, -2, 2 \rangle + 0 \cdot \langle 1, 3, -1 \rangle = \langle 0, -2, 2 \rangle$ $0 \cdot \langle 0, -2, 2 \rangle + (\cdot \langle 1, 3, -1 \rangle) = \langle 1, 3, -1 \rangle$ $\frac{1}{2} < 0, -2, 2 > -2 < 1, 3, -1 > = < -2, -7, 3 >$ $5 \cdot \langle 0, -2, 2 \rangle + | \cdot \langle 1, 3, -1 \rangle = \langle 1, -7, 9 \rangle$

(I)(c)Span ({ Z, 1+x }) $= \begin{cases} C_1 \cdot 2 + C_2 \cdot (1+\chi) \\ n - m bein \end{cases}$

Five example vectors in the above span:

 $0 \cdot 2 + 0 \cdot (1 + x) = 0$ $1 \cdot 2 + 0 \cdot (1 + x) = 2$ $0 \cdot 2 + \frac{1}{2}(1 + x) = \frac{1}{2} + \frac{1}{2}x$ $(-1 + \pi) + \pi x$ $(-\frac{1}{2}) \cdot 2 + \pi \cdot (1 + x) = (-1 + \pi) + \pi x$ $10 \cdot 2 - 10 \cdot (1 + x) = 10 - 10x$

 $\mathbb{D}(\mathcal{J})$ $span(\{2-1-2x, x^2, 1+x+x^2\})$ $= \left\{ C_{1}(-1-2\times) + C_{2}(\times^{2}) + C_{3}(1+\times+\times^{2}) \right\} C_{1}C_{2}C_{3} \in \mathbb{R} \right\}$ Five example vectors in the above span: $\left(-(-2\times) + 0 \cdot \chi^{2} + 0 \cdot (1+\chi+\chi^{2}) = -(-2\chi)\right)$ $-\left|\cdot\left(-\left(-2\times\right)+\left(\cdot\times^{2}-1\right)\cdot\left(\left(+x+x^{2}\right)\right)\right)\right| = X$ $2(-(-2\times)-2\times^{2}+(((+\times+x^{2}))=(-(-3\times-x^{2}))$ $4 \cdot (-1 - 2 \times) + 0 \cdot x^{2} + 0 \cdot (1 + x + x^{2}) = -4 - 8 \times 10^{-1}$ $0\cdot(-1-2x) + 5\cdot x^2 - 5\cdot(1+x+x^2) = (-5-5x)$

 $(z)(\alpha)$ We want to know if we can write $\langle 2, 2, 2 \rangle = c_1 \langle 0, -2, 2 \rangle + c_2 \langle 1, 3, -1 \rangle$ $c_1 u + c_2 v$ Let's see. The above equation becomes: $\langle 2, 2, 2 \rangle = \langle c_2, -2c_1 + 3c_2, 2c_1 - c_2 \rangle$ Now equate each component to get $2 = c_2$ $2 = -2c_1 + 3c_2$ $2 = 2c_1 - c_2$ $4 = 2c_1 - c_2$ $\begin{pmatrix} 0 & 1 & 2 \\ -2 & 3 & 2 \\ 2 & -1 & 2 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 2 & -1 & 2 \\ -2 & 3 & 2 \\ 0 & 1 & 2 \end{pmatrix} \xrightarrow{\frac{1}{2}R_1 \rightarrow R_1} \begin{pmatrix} 1 & -\frac{1}{2} & 1 \\ -2 & 3 & 2 \\ 0 & 1 & 2 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 2 & -1 & 2 \\ -2 & 3 & 2 \\ 0 & 1 & 2 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & -\frac{1}{2} & 1 \\ -2 & 3 & 2 \\ 0 & 1 & 2 \end{pmatrix}$

$$\xrightarrow{-2R_{2}+R_{3}\rightarrow R_{3}}\begin{pmatrix}1&-\frac{1}{2}&1\\0&1&2\\0&0&0\end{pmatrix}$$

(Z)(b)We want to know if we can write $\langle 3, 1, 5 \rangle = c_1 \langle 0, -2, 2 \rangle + c_2 \langle 1, 3, -1 \rangle$ Let's see. The above equation becomes: $\langle 3, 1, 5 \rangle = \langle c_2, -2c_1 + 3c_2, 2c_1 - c_2 \rangle$ Now equate each component to get $3 = c_2$ $1 = -2c_1 + 3c_2$ $5 = 2c_1 - c_2$ $4 = -2c_1 + 3c_2$ $4 = -2c_1 + 3c_$ $\begin{pmatrix} 0 & 1 & 3 \\ -2 & 3 & 1 \\ 2 & -1 & 5 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 2 & -1 & 5 \\ -2 & 3 & 1 \\ 0 & 1 & 3 \end{pmatrix} \xrightarrow{\frac{1}{2}R_1 \rightarrow R_1} \begin{pmatrix} 1 & -\frac{1}{2} & \frac{5}{2} \\ -2 & 3 & 1 \\ 0 & 1 & 3 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 2 & -1 & 5 \\ -2 & 3 & 1 \\ 0 & 1 & 3 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & -\frac{1}{2} & \frac{5}{2} \\ -2 & 3 & 1 \\ 0 & 1 & 3 \end{pmatrix}$ $2R_1 + R_2 + R_2 \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 2 & | & 6 \\ 0 & 1 & | & 3 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 3 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 3 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 3 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 3 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 3 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 3 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 3 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 3 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 3 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 5/2 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 5/2 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 5/2 \\ 0 & 2 & | & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -\frac{1}{2} & | & 5/2 \\ 0 & 1 & | & 5/2 \\ 0 & 2 & | & 6 \end{pmatrix}$

$$\xrightarrow{-2R_{2}+R_{3}\rightarrow R_{3}}\begin{pmatrix} 1 & -\frac{1}{2} & \frac{5}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{pmatrix}$$

So we have

$$C_1 - \frac{1}{2}C_2 = \frac{5}{2}$$
 (1) (2) gives $C_2 = 3$
 $C_2 = 3$ (2) (1) gives $C_1 = \frac{5}{2} + \frac{1}{2}C_2$
 $C_2 = 3$ (2) (1) gives $C_1 = \frac{5}{2} + \frac{1}{2}C_2$
 $= \frac{5}{2} + \frac{1}{2}(3)$
 $= \frac{8}{2} = \frac{4}{3}$

So, $\langle 2,2,2\rangle$ is in the span of \vec{u} and \vec{v} .

(z)(c)We want to know if we can write $\langle 0, 4, 5 \rangle = c_1 \langle 0, -2, 2 \rangle + c_2 \langle 1, 3, -1 \rangle$ Let's see. The above equation becomes: $\langle 0, 4, 5 \rangle = \langle c_2, -2c_1 + 3c_2, 2c_1 - c_2 \rangle$ Now equate each component to get $0 = c_2$ $4 = -2c_1 + 3c_2$ $5 = 2c_1 - c_2$ $4 = -2c_1 + 3c_2$ $4 = -2c_1 + 3c_$ $\begin{pmatrix} 0 & 1 & 0 \\ -2 & 3 & 4 \\ 2 & -1 & 5 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 2 & -1 & 5 \\ -2 & 3 & 4 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}R_1 \rightarrow R_1} \begin{pmatrix} 1 & -\frac{1}{2} & \frac{5}{2} \\ -2 & 3 & 4 \\ 0 & 1 & 0 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

$$\xrightarrow{-2R_{2}+R_{3}\rightarrow R_{3}}\begin{pmatrix}1&-\frac{1}{2}&\frac{5}{2}\\0&1&0\\0&0&9\end{pmatrix}$$

So we have

$$\begin{array}{c}
C_1 - \frac{1}{2} C_2 = 5/2 \\
C_2 = 0 \\
0 = 9
\end{array}$$
This last equation $0=9$
shows that the system
has ho colutions
Thus, there is no colution to
 $(0, 4, 5) = C_1 \cdot (0, -2, 2) + (2 \cdot (1, 3, -1))$
 $= C_1 \cdot (1, 2) + C_2 \cdot (1, 3, -1)$

$$\frac{2}{d}$$
 You can proceed as in the
previous problems, but this one is
easy to solve.
We have
 $\langle 0, 0, 0 \rangle = 0 \cdot \langle 0, -2, 2 \rangle + 0 \cdot \langle 1, 3, -1 \rangle$
 $= 0 \cdot \vec{u} + 0 \cdot \vec{v}$

(3) (a) We want to know if we can write $3+2x+x^{2}+2x^{3} = c_{1}\vec{p}_{1} + c_{2}\vec{p}_{2} + c_{3}\vec{p}_{3}$ $= c_{1}(2+x+4x^{2}) + c_{2}(1-x+3x^{2}) + c_{3}(1+x^{3})$

$$3 = 2c_1 + c_2 + c_3$$

$$2 = c_1 - c_2$$

$$1 = 4c_1 + 3c_2$$

$$2 = c_3$$
Now we must see if this system has a solution or not a solution or not

$$\begin{pmatrix} 2 & 1 & 1 & | & 3 \\ 1 & -1 & 0 & | & 2 \\ -1 & 3 & 0 & | & 1 \\ 0 & 0 & | & | & 2 \end{pmatrix} \xrightarrow{R_{1} \Leftrightarrow R_{2}} \begin{pmatrix} 1 & -1 & 0 & | & 2 \\ 2 & 1 & 1 & | & 3 \\ -1 & 2 & 1 & | & 2 \end{pmatrix}$$

$$\frac{-2R_{1} + R_{2} \Rightarrow R_{2}}{-4R_{1} + R_{3} \Rightarrow R_{3}} \begin{pmatrix} 1 & -1 & 0 & | & 2 \\ 0 & 3 & 1 & | & -7 \\ 0 & 7 & 0 & | & -7 \\ 0 & 0 & 1 & | & 2 \end{pmatrix} \xrightarrow{\frac{1}{2}R_{2} \Rightarrow R_{2}} \begin{pmatrix} 1 & -1 & 0 & | & 2 \\ -7 & 2 & | & -7 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}$$

$$\frac{R_{2} \leftrightarrow R_{3}}{-1} \begin{pmatrix} 1 & -1 & 0 & | & 2 \\ 0 & 7 & 0 & | & -7 \\ 0 & 3 & 1 & | & -1 \\ 0 & 0 & 1 & | & 2 \end{pmatrix} \xrightarrow{\frac{1}{2}R_{2} \Rightarrow R_{2}} \begin{pmatrix} 1 & -1 & 0 & | & 2 \\ -1 & 0 & | & -1 \\ 0 & 3 & 1 & | & -1 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}$$

$$-3R_{2} + R_{3} \rightarrow R_{3} \begin{pmatrix} 1 & -1 & 0 & | & 2 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 2 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}$$

$$-R_{3} + R_{4} \rightarrow R_{4} \begin{pmatrix} 1 & -1 & 0 & | & 2 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 2 \\ 0 & 0 & 1 & | & 2 \\ 0 & 0 & 1 & | & 2 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

The reduced system is

$$C_{1} - C_{2} = Z \qquad (1)$$

$$C_{2} = -1 \qquad (2)$$

$$C_{3} = Z \qquad (3)$$

$$0 = 0$$

We get the solution $C_3 = 2$ $C_2 = -1$ $C_1 = 2 + C_2 = 2 - 1 = 1$

Thus, $3+2x+x^{2}+2x^{3} = 1 \cdot \vec{p}_{1} - 1 \cdot \vec{p}_{2} + 2 \cdot \vec{P}_{3}$

So, $3+2x+x^{2}+2x^{3}$ is in the span of $\vec{P}_{1},\vec{P}_{2},\vec{P}_{3}$ <u>3</u>(b)

We want to know if we can write $1 + \chi = c_1 p_1 + c_2 p_2 + c_3 p_3$ $|+|\cdot X + 0 \cdot x^{2} + 0 x^{3} = c_{1}(2 + X + 4x^{2}) + c_{2}(1 - X + 3x^{2}) + c_{3}(1 + x^{3})$ This simplifies to $\frac{1+1.x+0.x^{2}+0.x^{3}}{1-1} = (2c_{1}+c_{2}+c_{3})+(c_{1}-c_{2})x+(4c_{1}+3c_{2})x^{2}$ $+ C_3 \chi^3$ Now equate the coefficients of both sides to get:

$$I = 2c_1 + c_2 + c_3$$

$$I = c_1 - c_2$$

$$0 = 4c_1 + 3c_2$$

$$0 = c_3$$

Now we must
see if this
system has
a solution or not

$$\begin{pmatrix} 2 & | & | & | & | \\ 1 & -1 & 0 & | & | \\ 4 & 3 & 0 & | & 0 \\ 0 & 0 & | & | & 0 \end{pmatrix} \xrightarrow{R_{1} \leftrightarrow R_{2}} \begin{pmatrix} 1 & -1 & 0 & | & 1 \\ 4 & 3 & 0 & | & 0 \\ 0 & 0 & | & | & 0 \end{pmatrix}$$

$$\frac{-2R_{1} + R_{2} \Rightarrow R_{2}}{-4R_{1} + R_{3} \Rightarrow R_{3}} \begin{pmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 3 & | & | & -1 \\ 0 & 7 & 0 & | & -4 \\ 0 & 0 & | & | & 0 \end{pmatrix}$$

$$\frac{R_{2} \leftrightarrow R_{3}}{-4R_{3}} \begin{pmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 7 & 0 & | & -4 \\ 0 & 0 & | & | & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}R_{2} \Rightarrow R_{2}} \begin{pmatrix} | & -1 & 0 & | & 1 \\ 0 & 1 & 0 & | & -4 \\ 0 & 0 & | & | & 0 \end{pmatrix}$$

$$\frac{R_{2} \leftrightarrow R_{3}}{-1} \begin{pmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}R_{2} + R_{3} \Rightarrow R_{3}} \begin{pmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}R_{2} + R_{3} \Rightarrow R_{3}} \begin{pmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 0 & | & 0 \end{pmatrix}$$

$$-\frac{R_{3} + R_{4} \rightarrow R_{4}}{-1} \begin{pmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 1 & 0 & | & -4/7 \\ 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}R_{2} + R_{3} \Rightarrow R_{3}} \begin{pmatrix} 1 & -1 & 0 & | & 1 \\ 0 & 1 & 0 & | & -4/7 \\ 0 & 0 & | & 0 \end{pmatrix}$$

The reduced system is

$$C_{1} - C_{2} = 1$$
 [1]
 $C_{2} = -\frac{4}{7}$ [2]
 $C_{3} = \frac{5}{7}$ [3]
 $0 = -\frac{5}{7}$ [4]

Equation (9) is $0 = -\frac{5}{7}$. Which isn't true. Hence the system has no solutions.

Thus,

$$3+2x+x^2+2x^3 = c_1 \cdot \vec{P_1} \cdot c_2 \cdot \vec{P_2} + c_3 \cdot \vec{P_3}$$

Cannot be solved for c_1, c_2, c_3 .

So,

$$3+2x+x^{2}+2x^{3}$$
 is not in the
 $5pan$ of $\vec{P}_{1},\vec{P}_{2},\vec{P}_{3}$

(3)(c)We have that $0 = 0 \cdot \vec{p}_1 + 0 \cdot \vec{p}_2 + 0 \vec{p}_3$ Thus, 0 is in the span of $\vec{P}_{1,1} \vec{P}_{2,1} \vec{P}_{3,1}$

(3)(d)We want to know if we can write $4 - x + 10x^2 = c_1 p_1 + c_2 p_2 + c_3 p_3$ $4 - \chi + 10\chi^{2} = c_{1}(2 + \chi + 4\chi^{2}) + c_{2}(1 - \chi + 3\chi^{2}) + c_{3}(1 + \chi^{3})$ This simplifies to $4 - x + 10x^{2} + 0x^{3} = (2c_{1} + c_{2} + c_{3}) + (c_{1} - c_{2})x + (4c_{1} + 3c_{2})x^{2}$ $+ C_3 \chi^3$ Now equate the coefficients of both sides to get:

$$\begin{aligned} 4 &= 2c_1 + c_2 + c_3 \\ -1 &= c_1 - c_2 \\ 10 &= 4c_1 + 3c_2 \\ 0 &= c_3 \end{aligned}$$
Now we must see if this system has a solution or not

$$\begin{pmatrix} 2 & | & | & | & | & | \\ | & -1 & 0 & | & -1 \\ | & 3 & 0 & | & 10 \\ 0 & 0 & | & | & 0 \end{pmatrix} \xrightarrow{R_1 \hookrightarrow R_2} \begin{pmatrix} 1 & -1 & 0 & | & -1 \\ 2 & 1 & 1 & | & | & | \\ | & 3 & 0 & | & 0 \end{pmatrix}$$

$$\frac{-2R_1 + R_2 \Rightarrow R_2}{-4R_1 + R_3 \Rightarrow R_3} \begin{pmatrix} 1 & -1 & 0 & | & -1 \\ 0 & 3 & 1 & | & 6 \\ 0 & 7 & 0 & | & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}R_2 \Rightarrow R_2} \begin{pmatrix} 1 & -1 & 0 & | & -1 \\ 0 & 3 & 1 & | & 0 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}$$

$$\frac{R_2 \leftrightarrow R_3}{-3R_2 + R_3 \Rightarrow R_3} \begin{pmatrix} 1 & -1 & 0 & | & -1 \\ 0 & 7 & 0 & | & R_2 \\ 0 & 0 & 1 & | & R_2 \Rightarrow R_2 \end{pmatrix} \xrightarrow{\frac{1}{2}R_2 \Rightarrow R_2} \begin{pmatrix} 1 & -1 & 0 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}$$

$$-3R_2 + R_3 \Rightarrow R_3 \begin{pmatrix} 1 & -1 & 0 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}$$

$$-R_3 + R_4 \rightarrow R_4 \begin{pmatrix} 1 & -1 & 0 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 0 \end{pmatrix}$$

The reduced system is

$$\begin{array}{cccc}
C_1 - C_2 &= -1 & 1 \\
C_2 &= 2 & 2 \\
C_3 &= 0 & 3 \\
0 &= 0 & \end{array}$$

We get the solution $C_3 = O$ $C_2 = Z$ $C_1 = -1 + C_2 = -1 + 2 = 1$

Thus,

$$4 - x + |0x^2 = | \cdot \vec{p}_1 + 2 \cdot \vec{p}_2 + 0 \cdot \vec{P}_3$$

(4) (a) We must solve the equation $c_1 \overline{u}_1 + c_2 \overline{u}_2 = \overline{O}$ This is equivalent to $c_1 < 1, -1 > + c_2 < 2, 1 > = < 0, 0 >$

This becomes $\langle c_1 \rangle - c_1 \rangle + \langle 2c_2 \rangle c_2 \rangle = \langle 0, 0 \rangle$

(4) (b) Method 1- the long way
We must find the solutions to the equation

$$c_1\vec{u}_1 + c_2\vec{u}_2 + c_3\vec{u}_3 = \vec{0}$$

This equation becomes
 $c_1\langle 3_1-1\rangle + c_2\langle 4_1S\rangle + c_3\langle -4_1,7\rangle = \langle 0,0\rangle$
This is equivalent to
 $\langle 3c_1-c_1\rangle + \langle 4c_2,5c_2\rangle + \langle -4c_3,7c_3\rangle = \langle 0,0\rangle$
This is equivalent to
 $\langle 3c_1-c_1\rangle + \langle 4c_2,5c_2\rangle + \langle -4c_3,7c_3\rangle = \langle 0,0\rangle$
Thus,
 $3c_1+4c_2-4c_3 - c_1+5c_2+7c_3\rangle = \langle 0,0\rangle$
Thus,
 $3c_1+4c_2-4c_3 - c_1+5c_2+7c_3\rangle = \langle 0,0\rangle$
 1
 1
 $(3 + 4c_2 - 4c_3 = 0)$
 $-c_1 + 5c_2 + 7c_3 = 0$
 $(3 + 4c_2 - 4c_3 = 0)$
 $-c_1 + 5c_2 + 7c_3 = 0$
 $(3 + 4c_2 - 4c_3 = 0)$
 $-c_1 + 5c_2 + 7c_3 = 0$
 $3c_3 + 4c_2 - 4c_3 = 0$
 $c_1 + 5c_2 + 7c_3 = 0$
 $c_2 + 7c_3 + 7c_3 = 0$
 $c_3 + 7c_3 + 7c_3 = 0$
 $c_1 + 5c_2 + 7c_3 = 0$
 $c_2 + 7c_3 + 7c_3 = 0$
 $c_3 + 7c_3 + 7c_3 = 0$
 $c_1 + 5c_2 + 7c_3 = 0$
 $c_2 + 7c_3 + 7c_3 = 0$
 $c_3 + 7c_3 + 7c_3 + 7c_3 = 0$

 $\begin{pmatrix} -1 & 5 & 7 & 0 \end{pmatrix}$

7

So, we get:

$$C_{1} - 5c_{2} - 7c_{3} = 0$$

$$C_{2} + \frac{17}{15}c_{3} = 0$$

$$C_{1} = 5c_{2} + 7c_{3}$$

$$C_{1} = 5c_{2} + 7c_{3}$$

$$C_{2} = -\frac{17}{19}c_{3}$$

$$C_{3} = t$$

$$C_{3} = t$$

$$C_{2} = -\frac{17}{19}t$$

$$C_{1} = 5c_{2} + 7c_{3}$$

$$= -\frac{85}{19}t + 7t$$

$$= \frac{48}{19}t$$

So,

$$C_1 \vec{u}_1 + c_2 \vec{u}_2 + c_3 \vec{u}_3 = \vec{0}$$

(an be solved by
 $\left(\frac{48}{19}t\right) \cdot \vec{u}_1 - \left(\frac{17}{19}t\right) \cdot \vec{u}_2 + t \vec{u}_3 = \vec{0}$
for any t .
In particular, say we set $t = 19$.
Then we get :
 $48 \vec{u}_1 - 17 \vec{u}_2 + 19 \vec{u}_3 = \vec{0}$.
Thus, $\vec{u}_1, \vec{u}_2, \vec{u}_3$ are linearly dependent.
Method 2-1. The dimension of \mathbb{R}^2 is 2.

Method 2-
short way The dimension of R is 2.
Thus, if we have more than 2 vectors
Thus, if we have more than 2 vectors
in R² they must be linearly dependent
by a theorem in class. Since we have 3
by a theorem in class. Since we have 3
vectors in a 2-dimensional space,
$$\tilde{4}_{11}, \tilde{4}_{21}, \tilde{4}_{3}$$

are lin. dep.

 $(\hat{\mathbf{y}})(\boldsymbol{z})$

Consider the equation $c_1 \vec{v}_1 + c_2 \vec{v}_2 + c_3 \vec{v}_3 = \vec{0}$. The above equation becomes $c_1 \langle -3, 0, 4 \rangle + c_2 \langle 5, -1, 2 \rangle + c_3 \langle 1, 1, 3 \rangle = \langle 0, 0, 0 \rangle$ which is equivalent to $\langle -3c_1, 0, 4c_1 \rangle + \langle 5c_2, -c_2, 2c_2 \rangle + \langle c_3, c_3, 3c_3 \rangle = \langle 0, 0, 0 \rangle$

Let's solve this system.

 $\begin{pmatrix} -3 & 5 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 4 & 2 & 3 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{3}R_{1} \Rightarrow R_{1}} \begin{pmatrix} 1 & -\frac{3}{3} & -\frac{1}{3} & 0 \\ 0 & -1 & 1 & 0 \\ 4 & 2 & 3 & 0 \end{pmatrix} \xrightarrow{-\frac{1}{3}R_{1} \Rightarrow R_{1}} \begin{pmatrix} 1 & -\frac{3}{3} & -\frac{1}{3} & 0 \\ 0 & -1 & 1 & 0 \\ 4 & 2 & 3 & 0 \end{pmatrix}$

This becomes

$$\begin{array}{c}
c_{1} - \frac{5}{3}c_{2} - \frac{1}{3}c_{3} = 0 \\
c_{2} - c_{3} = 0 \\
c_{3} = 0
\end{array}$$
(1)
(2)
(3)

(3) gives
$$c_3 = 0$$

(2) gives $c_2 = c_3 = 0$
(1) gives $c_1 = \frac{5}{3}c_2 + \frac{1}{3}c_3 = \frac{5}{3} \cdot 0 + \frac{1}{3} \cdot 0 = 0$
Thus, the only solution to
 $c_1\vec{u}_1 + c_2\vec{u}_2 + c_3\vec{u}_3 = \vec{0}$

is
$$c_1 = c_2 = c_3 = 0$$
.
So, $\vec{u}_1, \vec{u}_2, \vec{u}_3$ are linearly
independent.

(4) (2) Consider the equation $C_1 P_1 + C_2 P_2 + C_3 P_3 = 0$. If the only solution to this equation is $C_1 = C_2 = C_3 = 0$, then P_1, P_2, P_3 are linearly independent. If there are more solutions then Pr, Pz, P3 are linearly dependent. Let's see what happens. The above equation becomes $c_1(3-2x+x^2) + c_2(1+x+x^2) + c_3(6-4x+2x^2)$ $= 0 + 0 \times + 0 \times^{2}$ Grouping like terms gives $(3c_1 + c_2 + 6c_3) + (-2c_1 + c_2 - 4c_3) \times + (c_1 + c_2 + 2c_3)$ $= 0 + 0 \times + 0 \times^2$ Equating coefficients gives (Let's solve this) E system. $3c_1 + c_2 + 6c_3 = 0$ -2c_1 + c_2 - 4c_3 = 0 $c_1 + (2 + 2)(3 = 0)$

$$\begin{pmatrix} 3 & 1 & 6 & 0 \\ -2 & 1 & -4 & 0 \\ 1 & 1 & 2 & 0 \end{pmatrix} \xrightarrow{R_1 \oplus R_2} \begin{pmatrix} 1 & 1 & 2 & 0 \\ -2 & 1 & -4 & 0 \\ 3 & 1 & 6 & 0 \end{pmatrix}$$

$$\xrightarrow{ZR_1 + R_2 \to R_2} \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & -2 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{3}R_2 \to R_2} \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{3}R_2 \to R_2} \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{-R_2 + R_3 \to R_3} \begin{pmatrix} 1 & 1 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
The reduced system is:
$$\begin{pmatrix} C_1 + C_2 + 2C_3 = 0 \\ C_2 & = 0 \\ 0 & = 0 \end{pmatrix}$$

$$\xrightarrow{Leading Variables} \\ \xrightarrow{R_2 - R_2 - R_2 - R_2} \\ \xrightarrow{R_2 - R_2 - R_2 - R_2 - R_2} \\ \xrightarrow{R_2 - R_2 - R_2 - R_2 - R_2} \\ \xrightarrow{R_2 - R_2 - R_2 - R_2 - R_2} \\ \xrightarrow{R_2 - R_2 - R_2 - R_2 - R_2 - R_2} \\ \xrightarrow{R_2 - R_2 -$$

$$\begin{split} & \int_{P_1} \int_{P_1} f_1 + 0 \cdot \vec{P}_2 + t \cdot \vec{P}_3 = \vec{0} \\ & \int_{P_1} f_1 + 0 \cdot \vec{P}_2 + t \cdot \vec{P}_3 = \vec{0} \\ & \int_{P_1} f_2 + f_3 + f_3 = \vec{0} \\ & -2\vec{P}_1 + 0\vec{P}_2 + f_2 + f_3 = \vec{0} \\ & \int_{P_1} f_1 \cdot \vec{P}_2 + f_2 \cdot \vec{P}_3 \\ & \text{Thus,} \quad \vec{P}_1 \cdot \vec{P}_2 \cdot \vec{P}_3 \text{ are linearly} \\ & \text{dependent.} \end{split}$$

(4) (e)
Consider the equation

$$c_1 \vec{P}_1 + c_2 \vec{P}_2 + c_3 \vec{P}_3 = \vec{O}$$

which becomes
 $c_1 (1) + c_2 (1+X) + c_3 (1+X+X^2) = 0 + 0x + 0x^2$
 $c_1 (1) + c_2 (1+X) + c_3 (1+X+X^2) = 0 + 0x + 0x^2$
Regrouping we get
 $(c_1 + c_2 + c_3) + (c_2 + c_3)X + c_3 X^2 = 0 + 0x + 0x^2$
Equating coefficients we get:
 $c_1 + c_2 + c_3 = 0$
 $c_2 + c_3 = 0$
 $c_3 = 0$ (3) already
reduced

Solving we get (3) $c_3 = 0$, (2) $c_2 = -c_3 = -(a) = 0$, (1) $c_1 = -c_2 - c_3 = -(a) - |a| = 0$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Since the only solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_1 + c_2 \vec{p}_2 + c_3 \vec{p}_3 = \vec{0}$ Solution to $c_1 \vec{p}_2 + c_3 \vec{p}_3 + c_3 \vec{p}_3$ $(5)(\alpha)$

We want to check whether or not the vectors $\vec{V}_1 = \langle 2, 2, 2 \rangle, \quad \vec{V}_2 = \langle 4, 1, 2 \rangle,$ Vs = <0,1,1) are linearly independent or linearly dependent in R³. We want to solve -i $c_1v_1 + c_2v_2 + c_3v_3 = 0$ for <1, C2, C3. $c_1 < 2, 2, 2 > + c_2 < 4, 1, 2 > + c_3 < 0, 1, 1 > = < 0, 0, 0 >$ Suppose, $\langle 2c_1 + 4c_2, 2c_1 + c_2 + c_3, 2c_1 + 2c_2 + c_3 \rangle = \langle 0, 0, 0 \rangle$ Then, $\begin{cases} 2c_1 + 4c_2 &= 0\\ 2c_1 + c_2 + c_3 &= 0\\ 2c_1 + 2c_2 + c_3 &= 0 \end{cases}$ Let's try to solve this system which becomes

$$\begin{pmatrix} 2 & 4 & 0 & 0 \\ z & 1 & 1 & 0 \\ 2 & 2 & 1 & 0 \end{pmatrix} \xrightarrow{\frac{1}{2}R_{1} \neq R_{1}} \begin{pmatrix} 1 & 2 & 0 & 0 \\ z & 1 & 1 & 0 \\ 2 & 2 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{-2R_{1} + R_{2} \Rightarrow R_{2}} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & -3 & 1 & 0 \\ 0 & -2 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{-\frac{1}{3}R_{2} \Rightarrow R_{2}} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & -\frac{1}{3} & 0 \\ 0 & -2 & 1 & 0 \end{pmatrix}$$

$$\xrightarrow{2R_{2} + R_{3} \Rightarrow R_{3}} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & -\frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} & 0 \end{pmatrix}$$

$$\xrightarrow{2R_{2} + R_{3} \Rightarrow R_{3}} \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & -\frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} & 0 \end{pmatrix}$$

The reduced system is

$$C_1 + 2C_2 = 0$$

$$C_2 - \frac{1}{5}C_3 = 0$$

$$C_3 = 0$$

$$C_1 = -2C_2 = -2 \cdot 0 = 0$$

$$C_3 = 0$$

$$C_1 = -2C_2 = -2 \cdot 0 = 0$$
Therefore, $V_1 + V_2$ are linearly independent in \mathbb{R}^3 .

(5) (b) Same method as in 4(a).
Suppose

$$c_1 \langle 2, -1, 3 \rangle + c_2 \langle 4, 1, 2 \rangle + c_3 \langle 8, -1, 8 \rangle = \langle 0, 0, 0 \rangle$$

 $c_1 V_1 + c_2 V_2 + c_3 V_3 = 0$
We want to solve for $< 1, 0 \cdot 1, 0 \cdot 1$.
This equation becomes
 $\langle 2c_1 - c_1, 3c_1 \rangle + \langle 4c_{2,1}c_{2,2}c_2 \rangle + \langle 8c_{3,1} - c_{3,1}8c_{3} \rangle = \langle 0, 0, 0 \rangle$
This becomes
 $\langle 2c_1 + 4c_2 + 8c_{3,2} - c_1 + c_2 - c_{3,3} 3c_1 + 2c_2 + 8c_3 \rangle = \langle 0, 0, 0 \rangle$
which gives us the system:
 $2c_1 + 4c_2 + 8c_3 = 0$
 $2c_1 + 4c_2 + 8c_3 = 0$
 $2c_1 + 4c_2 + 8c_3 = 0$
 $2c_1 + 2c_2 + 8c_3 = 0$
 $2c_1 + 2c_3 + 2c_3$

The reduced rystem is:

$$C_1 + 2C_2 + 4C_3 = 0$$

 $C_2 + C_3 = 0$
 $0 = 0$
[ending variables: C_1, C_2
free variable: C_3

This gives:

$$C_1 = -2C_2 - 4C_3$$
 (D)
 $C_2 = -C_3$ (2)
 $C_3 = \pm$ (3)

Thus,

$$3c_3 = t$$

 $2c_2 = -c_3 = -t$
 $1c_1 = -2c_2 - 4c_3 = -2(-t) - 4t = -2t$

So, the solution is:

$$c_1 = -2t$$

$$c_2 = -t$$

$$t \text{ can be any}$$

$$c_3 = t$$

$$real #$$
For example, $t = 1$ gives $c_1 = -2, c_2 = -1, c_3 = 1$.
Thus, plugging into the original equation gives
 $1 \cdot \langle 2, -1, 3 \rangle - 1 \cdot \langle 4, 1, 2 \rangle + 1 \cdot \langle 3, -1, 8 \rangle = \langle 0, 0, 0 \rangle$
 $1 \cdot \vec{v}_1 - 1 \cdot \vec{v}_2 + 1 \cdot \vec{v}_3 = \vec{O}$
Thus, $\vec{v}_1 = \langle 2, -1, 3 \rangle$, $\vec{v}_2 = \langle 4, 1, 2 \rangle$, $\vec{v}_3 = \langle 8, -1, 8 \rangle$
are linearly dependent.

6)(a) In problem 5(a) We showed that

$$\vec{v}_1 = \langle 2, 2, 2 \rangle$$
, $\vec{v}_2 = \langle 4, 1, 2 \rangle$, $\vec{v}_3 = \langle 0, 1, 1 \rangle$
are linearly independent.
Since we have 3 linearly independent
Vectors in a 3-dimensional space $V = \mathbb{R}^3$,
by a theorem in class we know
 $\vec{v}_1, \vec{v}_2, \vec{v}_3$ must span \mathbb{R}^3 and thus
be a basis for $V = \mathbb{R}^3$.

(b) In problem 5(b) we showed that

$$\vec{V}_1 = \langle 2, -1, 3 \rangle, \vec{V}_2 = \langle 4, 1, 2 \rangle, \vec{V}_3 = \langle 8, -1, 8 \rangle$$

are linearly dependent.
Thus, $\vec{V}_1, \vec{V}_2, \vec{V}_3$ are not a basis
for $V = \mathbb{R}^3$.

(7) (al Since R° has dimension 3, We need 3 vectors to have a basis for \mathbb{R}^2 . Thus, $\vec{V}_1 = \langle 4, -1, 2 \rangle$, $V_2 = (-4, 10, 2)$ are not a basis for RS.

(F)(b) By problem 4(c) the vectors $\vec{V}_1 = \langle -3, 0, 4 \rangle, \quad \vec{V}_2 = \langle 5, -1, 2 \rangle, \quad \vec{V}_3 = \langle 1, 1, 3 \rangle$ are linearly independent. Since we have 3 linearly independent Vectors V, JV2, V3 in a vector space IR of dimension 3, by a theorem in class they must span IR³ and hence are a basis for R^s.

(F) (c) Since IR has dimension 3, We need exactly 3 vectors to have a basis for \mathbb{R}^3 . Thus, $\vec{v}_1 = \langle -2, 0, 1 \rangle$, $\vec{v}_{2} = \langle 3, 2, 5 \rangle, \quad \vec{v}_{3} = \langle 6, -1, 1 \rangle, \quad \vec{v}_{4} = \langle 7, 0, -2 \rangle$ are not a basir for R³. We have too many vectors. You could also just directly show that these 4 vectors are linearly dependendent and hence not a basis for \mathbb{R}^3 .

(8)(a)The dimension of P2 is 2+1=3, In problem 4(e) we showed that $\vec{p}_1 = 1$, $\vec{p}_2 = 1 + \kappa$, $\vec{p}_3 = 1 + \kappa + \kappa^2$ are linearly independent. Thus, by a theorem in class, since we have 3 linearly independent vectors in a 3-dimensional space V=Pz, we know that $\vec{P}_1 = 1, \vec{P}_2 = 1 + \chi, \vec{P}_3 = 1 + \chi + \chi^2$ form a basis for $V = P_2$.

(8) (b) Same idea as
$$8(a)$$
.
The dimension of P_2 is $2+1=3$.
Thus, since we have 3 vectors, the vectors
 $\vec{P}_1 = 6 - x^2$, $\vec{P}_2 = 1 + x + 4x^2$, $\vec{P}_3 = 8 + 2x + 7x^2$
Will be a basis if and only if
they are linearly independent.
Consider the equation
 $c_1 \vec{P}_1 + c_2 \vec{P}_2 + c_3 \vec{P}_3 = \vec{O}$
which becomes
 $c_1(6-x^2) + c_2(1+x+4x^2) + c_3(8+2x+7x^2) = 0 + 0x + 0x^2$
Grouping like terms gives
 $(6c_1+c_2+8c_3) + (c_2+2c_3)x + (-c_1+4c_2+7c_3)$
 $(6c_1+c_2+8c_3) + (c_2+2c_3)x + (-c_1+4c_2+7c_3)$
 $(6c_1+c_2+8c_3) + (c_2+2c_3)x + (-c_1+4c_2+7c_3)$
Equating coefficients gives
 $(6c_1+c_2+8c_3) = 0$
 $(-c_1+4c_2+7c_3=0)$
 $(-c_1+4c_2+7c_3=0)$

$$\begin{pmatrix} 6 & | & 8 & | & 0 \\ \circ & | & 2 & | & 0 \\ -1 & 4 & 7 & | & 0 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_3} \begin{pmatrix} -1 & 4 & 7 & | & 0 \\ 0 & | & 2 & | & 0 \\ 6 & | & 8 & | & 0 \end{pmatrix}$$

$$\xrightarrow{-R_1 \rightarrow R_1} \begin{pmatrix} | & -4 & -7 & | & 0 \\ 0 & | & 2 & | & 0 \\ 6 & | & 8 & | & 0 \end{pmatrix}$$

$$\xrightarrow{-GR_1 + R_3 \rightarrow R_3} \begin{pmatrix} | & -4 & -7 & | & 0 \\ 0 & | & 2 & | & 0 \\ 0 & 25 & 50 & | & 0 \end{pmatrix}$$

$$\xrightarrow{-2SR_2 + R_3 \rightarrow R_3} \begin{pmatrix} | & -4 & -7 & | & 0 \\ 0 & | & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

The reduced system is:

$$\begin{array}{c} \hline c_1 - 4c_2 - 7c_3 = 0 \\ \hline c_2 + 2c_3 = 0 \\ 0 = 0 \end{array}$$
Leading variables: $c_1 c_2$
Free variable: c_3

Solutions:

$$c_3 = t$$

 $c_2 = -2c_3 = -2t$
 $c_1 = 4(c_2 + 7c_3 = 4(-2t) + 7t = -t$

Therefore, $(-t)\vec{p}_{1} + (-2t)\vec{p}_{2} + (t)\vec{p}_{3} = 0$ tor any t. For example, if t=1, then $-P_1 - 2P_2 + P_3 = 0$ Thus, P, P2, P3 are linearly dependent and hence are not a basis for Pz.

(9)(a)Let's show that the vectors <1,47, <3,-27 are linearly independent. $<_{1}<1,47+c_{2}<3,-27=<0,07$ Consider the equation $\langle c_1 + 3c_2, 4c_1 - 2c_2 \rangle = \langle 0, 0 \rangle$ This becomes which is equivalent to $c_1 + 3c_2 = 0$ $4c_1 - 2c_2 = 0$ Let's solve this. $\begin{pmatrix} 1 & 3 & 0 \\ 4 & -2 & 0 \end{pmatrix} \xrightarrow{-4R_1 + R_2 \to R_2} \begin{pmatrix} 1 & 3 & 0 \\ 0 & -14 & 0 \end{pmatrix}$ $\xrightarrow{-1}_{14}R_2 \xrightarrow{R_2} \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$ So, the reduced system is $\begin{array}{c} C_1 + 3C_2 = 0 \\ C_2 = 0 \end{array} \longrightarrow \begin{array}{c} \text{ which gives} \\ C_2 = 0 \end{array} \xrightarrow{} \begin{array}{c} C_2 = 0 \\ C_2 = 0 \\ \end{array} \xrightarrow{} \begin{array}{c} C_1 = -3C_2 = 0 \\ C_2 = 0 \\ \end{array}$

the only solution is $c_1 = c_2 = 0$. Thus, Thus, <1,47,<3,-27 are linearly independent. Since IR² has dimension Z, and we have 2 linearly independent vectors, we can conclude that <1,4>, <3,-2> are a basis for R² (9(6) We must solve $\langle -7, 14 \rangle = c_1 \langle 1, 4 \rangle + c_2 \langle 3, -2 \rangle$ Which becomes $(-7,14) = \langle c_1 + 3c_2, 4c_1 - 2c_2 \rangle$ which becomes $-7 = c_1 + 3c_2$ $14 = 4c_1 - 2c_2$ Let's solve this system: $\begin{pmatrix} 1 & 3 & | -7 \\ 4 & -2 & | 14 \end{pmatrix} \xrightarrow{-4R_1+R_2 \rightarrow R_2} \begin{pmatrix} 1 & 3 & | -7 \\ 0 & -14 & | 42 \end{pmatrix} \longrightarrow$

$$\xrightarrow{-\frac{1}{14}R_2 \rightarrow R_2} \begin{pmatrix} 1 & 3 & | -7 \\ 0 & | & | -3 \end{pmatrix}$$

So we get: $c_1 + 3c_2 = -7$ $c_2 = -3$

$$S_{o_1} \quad C_2 = -3 \\ c_1 = -7 - 3 \\ c_2 = -7 - 3 \\ (-3) = 2.$$

Thus, $\langle -7, 14 \rangle = 2 \cdot \langle 1, 4 \rangle + (-3) \langle 3, -2 \rangle$ $\langle -7, 14 \rangle = 2 \cdot \langle 1, 4 \rangle + (-3) \langle 3, -2 \rangle$ So, the coordinates of $\langle -7, 14 \rangle$ with $\int respect to the ordered basis$ respect to the ordered basis $B = [\langle 1, 4 \rangle, \langle 3, -2 \rangle] \text{ are}$ $[\langle -7, 14 \rangle]_{B} = \langle 2, -3 \rangle$

$$\begin{array}{l} (c) \\ \text{We Want to solve} \\ <3,-12 > = c_1 < 1, 47 + c_2 < 3, -2 \\ \text{which be comes} \\ <3,-12 > = < c_1 + 3 c_2 , 4 c_1 - 2 c_2 \\ \text{which is equivalent to} \\ \hline 3 = c_1 + 3 c_2 \\ -12 = 4 c_1 - 2 c_2 \\ \text{Let's solve this system:} \\ \text{Let's solve this system:} \\ \frac{1}{4} - 2 & -12 \\ \hline -12 \\ \hline + R_2 \rightarrow R_2 \\ \hline \\ c_2 = \frac{12}{7} , c_1 = 3 - 3 c_2 = 3 - \frac{36}{7} = -\frac{15}{7} \\ \end{array}$$

Thus, <3,-12> = (学) < 1,4>+(学) < 3,-2>So, the coordinates of <3,-12> with respect to the ordered basis $\beta = [(1, 4), (3, -2)]$ are $\left[\left\langle 3,-12\right\rangle \right]_{B}=\left\langle -\frac{15}{4},\frac{12}{4}\right\rangle$

10 (a)
Let vs show that the vectors
are linearly independent.
Consider the equation

$$c_1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c_4 \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

This becomes

$$\begin{pmatrix} c_1 + c_2 & c_2 - c_4 \\ c_2 + c_4 & c_1 + c_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Equating cuefficients gives

$$\begin{array}{cccc}
= 0 \\
c_1 + c_2 &= 0 \\
c_2 & -c_4 = 0 \\
c_2 & +c_4 = 0 \\
c_1 & +c_3 &= 0\end{array}$$
Let's solve
this system

Solving gives
$$C_{y} = 0$$
, $C_{3} = C_{4} = 0$,
 $C_{2} = C_{4} = 0$, and $C_{1} = -C_{2} = -0 = 0$.
Thus, $C_{1} = C_{2} = C_{3} = C_{4} = 0$ is the
only solution.
So, the vectors
 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$,
 $\begin{pmatrix} 0 & 0 \\ 1$

$$(10)(b) \text{ We need to solve}$$

$$\begin{pmatrix} 1 & -2 \\ 0 & -3 \end{pmatrix} = c_1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c_4 \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Which becomes

$$\begin{pmatrix} 1 & -2 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} c_1 + c_2 & c_2 - c_4 \\ c_2 + c_4 & c_1 + c_3 \end{pmatrix}$$

Solving this system gives $C_{4} = 1$, $C_{3} = -6 + C_{4} = -6 + 1 = -5$ $C_{2} = -2 + C_{4} = -2 + 1 = -1$, and $C_{1} = 1 - C_{2} = 1 - (-1) = 2$

$$(10)(c) \text{ We need to solve}$$

$$\begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} = c_1 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + c_2 \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} + c_3 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c_4 \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Which becomes

$$\begin{pmatrix} 3 & 4 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} c_1 + c_2 & c_2 - c_4 \\ c_2 + c_4 & c_1 + c_3 \end{pmatrix}$$

$$\begin{array}{rcl}
c_{1} + c_{2} & = 3 \\
c_{2} & - c_{4} = 4 \\
c_{2} & + c_{4} = 0 \\
c_{1} & + c_{3} & = 1
\end{array}$$

Let's solve this system

Solving this system gives $C_{4} = -2$, $C_{3} = 2 + C_{4} = 2 - 2 = 0$ $C_{2} = 4 + C_{4} = 4 - 2 = 2$, and $C_{1} = 3 - C_{2} = 3 - 2 = 1$,

(i) (a) Let $\beta = [1, 1+x, 1+x+x^2]$ We need to solve $1 - x + 2x^2 = c_1(1) + c_2(1+x) + c_3(1+x+x^2)$ which is $1 - x + 2x^2 = (c_1 + c_2 + c_3) + (c_2 + c_3)x + c_3x^2$

Equating coefficients gives $\begin{bmatrix} 1 = c_1 + c_2 + c_3 \\ -1 = c_2 + c_3 \\ 2 = c_3 \end{bmatrix}$ This system is already in reduced form, so we can solve it. We get $c_3 = 2$, $c_2 = -1 - c_3 = -1 - 2 = -3$,

We get $c_3 = 2$, $c_2 = 1$, c_3 $c_1 = 1 - c_2 - c_3 = 1 - (-3) - 2 = 2$.

Thus, $(-x + 2x^{2} = 2 \cdot (1) - 3 \cdot (1+x) + 2 \cdot (1+x+x^{2})$ 5_{0} $[1-x+2x^{2}]_{\beta} = \langle 2, -3, 2 \rangle$ (1) (b) Let $\beta = [1, 1+x, 1+x+x^2]$ We need to solve $X = C_1(1) + C_2(1+x) + C_3(1+x+x^2)$

which is $0 + 1 \cdot x + 0 \cdot x^{2} = (c_{1} + c_{2} + c_{3}) + (c_{2} + c_{3}) \times + c_{3} \times T$

Equating coefficientr gives $0 = c_1 + c_2 + c_3 \qquad 0 \qquad \text{This system is already} \\ 1 = c_2 + c_3 \qquad \text{in reduced form, so} \\ 0 = c_3 \qquad \text{in solve it.} \end{aligned}$ We get $c_3 = 0$, $c_2 = |-c_3| = |-0| = |$ $c_1 = 0 - c_2 - c_3 = 0 - 1 - 0 = -1$ $X = -1 \cdot (1) + 1 \cdot (1 + X) + \delta \cdot (1 + X + X^{z})$ Thus, $\sum_{x} = \langle -1, 1, 0 \rangle$ 50,

(12) $\begin{bmatrix}
 I & claim + hat \\
 \beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$ is a basis for Mz,z. If we show this claim then Mz, 2 has dimension 4. B spans M2,2 Let (ab) be an arbitrary element of Mz,z, Then $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & d \end{pmatrix}$ Then $= \alpha\binom{10}{00} + b\binom{01}{00} + c\binom{00}{10} + d\binom{00}{01}$ Thus, every element of M2,2 is in the span of $B = \{(0,0), (0,0$

B is linearly independent Suppose that $C_{1}\begin{pmatrix}1&0\\0&0\end{pmatrix}+C_{2}\begin{pmatrix}0&1\\0&0\end{pmatrix}+C_{3}\begin{pmatrix}0&0\\0&0\end{pmatrix}+C_{4}\begin{pmatrix}0&0\\0&1\end{pmatrix}=\begin{pmatrix}0&0\\0&0\end{pmatrix}$ Then $\begin{pmatrix} c_1 & c_2 \\ c_3 & c_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $S_{0}, C_{1} = C_{2} = C_{3} = C_{4} = 0.$ Thus, $\beta = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$ is a linearly independent set Since B is lin, ind. and spans M2,2, B is a basis for M2,2. Since B has 4 elements, M2,2

has dimension 4.

(13) $P_{\Lambda} = \left\{ a_{0} + a_{1} \cdot x + a_{2} \cdot x^{2} + \dots + a_{\Lambda} x^{\Lambda} \right\} a_{0}, a_{1}, \dots, a_{\Lambda} \in \mathbb{R} \right\}$ Claim: $B = \{1, x, x^2, \dots, x^n\}$ is a basis for Pr.

Let $\vec{P} = \alpha_0 + \alpha_1 \times + \alpha_2 \times + \dots + \alpha_n \times^n$ B spans Pn . Then be an arbitrary element of Pn. $\vec{p} = \alpha_0 + \alpha_1 \times + \alpha_2 \times^2 + \dots + \alpha_n \times^n$ $= q_0 \cdot 1 + q_1 \cdot x + q_2 \cdot x^2 + \dots + q_n x^n$ So, P is in the span of $\beta = \{1, x, x^2, \dots, x^n\}$

B is a linearly independent set of vectors :
Suppose that

$$c_0 \cdot 1 + c_1 \cdot x + c_2 \cdot x^2 + \dots + c_n \cdot x^n = 0 + 0 \times + 0 x^2 + \dots + 0 x^n$$

Then equating coefficients gives
 $c_0 = 0, c_1 = 0, c_2 = 0, \dots, c_n = 0$.
 $c_0 = 0, c_1 = 0, c_2 = 0, \dots, x^n$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
Thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
thus, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the above, $B = \{1, x, x^2, \dots, x^n\}$ is a linearly
the ab