
(1) (a)

$$
\begin{aligned}
& \operatorname{span}(\{\langle 0,1\rangle,\langle 1,1\rangle,\langle-3,2\rangle\}) \\
& =\left\{\begin{array}{l|l}
c_{1}\langle 0,1\rangle+c_{2}\langle 1,1\rangle+c_{3}(-3,2) & \begin{array}{l}
c_{1}, c_{2}, c_{3} \\
\text { are real } \\
\text { numbers }
\end{array}
\end{array}\right\}
\end{aligned}
$$

Five example vectors in the above span:

$$
\begin{aligned}
& 1 \cdot\langle 0,1\rangle+1 \cdot\langle 1,1\rangle+1 \cdot\langle-3,2\rangle=\langle-2,4\rangle \\
& 0 \cdot\langle 0,1\rangle+0 \cdot\langle 1,1\rangle+0 \cdot\langle-3,2\rangle=\langle 0,0\rangle \\
& 10 \cdot\langle 0,1\rangle+\pi\langle 1,1\rangle+0 \cdot\langle-3,2\rangle=\langle\pi, \pi+10\rangle \\
& 0 \cdot\langle 0,1\rangle+1 \cdot\langle 1,1\rangle-5 \cdot\langle-3,2\rangle=\langle\langle 16,-9\rangle \\
& 2 \cdot\langle 0,1\rangle-1 \cdot\langle 1,1\rangle+1 \cdot\langle-3,2\rangle=\langle-4,3\rangle
\end{aligned}
$$

(1) (b)

$$
\begin{aligned}
& \operatorname{span}(\{\langle 0,-2,2\rangle,\langle 1,3,-1\rangle\}) \\
& =\left\{c_{1}\langle 0,-2,2\rangle+c_{2}\langle 1,3,-1\rangle \mid c_{1}, c_{2} \in \mathbb{R}\right\}
\end{aligned}
$$

Five example vectors in the above span:

$$
\begin{aligned}
& 0 \cdot\langle 0,-2,2\rangle+0 \cdot\langle 1,3,-1\rangle=\langle 0,0,0\rangle \\
& 1 \cdot\langle 0,-2,2\rangle+0 \cdot\langle 1,3,-1\rangle=\langle 0,-2,2\rangle \\
& 0 \cdot\langle 0,-2,2\rangle+1 \cdot\langle 1,3,-1\rangle=\langle 1,3,-1\rangle \\
& \frac{1}{2} \cdot\langle 0,-2,2\rangle-2\langle 1,3,-1\rangle=\langle-2,-7,3\rangle \\
& 5 \cdot\langle 0,-2,2\rangle+1 \cdot\langle 1,3,-1\rangle=\langle 1,-7,9\rangle
\end{aligned}
$$

(1)(c)

$$
\left.\begin{array}{l}
\operatorname{span}(\{2,1+x\}) \\
=\left\{c_{1} \cdot 2+c_{2} \cdot(1+x) \mid c_{1}, c_{2}\right. \text { are real } \\
\text { numbers }
\end{array}\right\}
$$

Five example vectors in the above span:

$$
\begin{aligned}
& 0 \cdot 2+0 \cdot(1+x)=0 \\
& 1 \cdot 2+0 \cdot(1+x)=2 \\
& 0 \cdot 2+\frac{1}{2}(1+x)=\frac{1}{2}+\frac{1}{2} x \\
& \left(-\frac{1}{2}\right) \cdot 2+\pi \cdot(1+x)=(-1+\pi)+\pi x \\
& 10 \cdot 2-10 \cdot(1+x)=10-10 x
\end{aligned}
$$

(1) (d)

$$
\begin{aligned}
& \operatorname{span}\left(\left\{-1-2 x, x^{2}, 1+x+x^{2}\right\}\right) \\
& \left.=\left\{c_{1}(-1-2 x)+c_{2}\left(x^{2}\right)+c_{3}\left(1+x+x^{2}\right)\right) c_{1}, c_{2}, c_{3} \in \mathbb{R}\right\}
\end{aligned}
$$

Five example vectors in the above span:

$$
\begin{aligned}
& 1 \cdot(-1-2 x)+0 \cdot x^{2}+0 \cdot\left(1+x+x^{2}\right)=-1-2 x \\
& -1 \cdot(-1-2 x)+1 \cdot x^{2}-1 \cdot\left(1+x+x^{2}\right)=x \\
&
\end{aligned}
$$

$$
\begin{aligned}
& -1 \cdot(-1-2 x)+1 \cdot x^{2}-1 \cdot(1+x+x \\
& 2 \cdot(-1-2 x)-2 \cdot x^{2}+1 \cdot\left(1+x+x^{2}\right)=-1-3 x-x^{2} \\
& 2)=-4-8 x
\end{aligned}
$$

$$
\begin{aligned}
& 2 \cdot(-1-2 x)-2 \cdot x+1 \\
& 4 \cdot(-1-2 x)+0 \cdot x^{2}+0 \cdot\left(1+x+x^{2}\right)=-4-8 x \\
& 0 \cdot(-1-2 x)+5 \cdot x^{2}-5 \cdot\left(1+x+x^{2}\right)=-5-5 x
\end{aligned}
$$

(2) (a)

We want to know if we can write

$$
\begin{aligned}
& \langle 2,2,2\rangle= \\
& \text { Let's see. }
\end{aligned}
$$

The above equation becomes:

$$
\text { The above equation be }\langle 2,2,2\rangle=\left\langle c_{2},-2 c_{1}+3 c_{2}, 2 c_{1}-c_{2}\right\rangle
$$

Now equate each component to get

$$
\begin{aligned}
& 2=c_{2} \\
& 2=-2 c_{1}+3 c_{2} \\
& 2=2 c_{1}-c_{2} \\
& p \text { Let's see if } \\
& \text { we can solve } \\
& \text { this system } \\
& \left(\begin{array}{cc|c}
0 & 1 & 2 \\
-2 & 3 & 2 \\
2 & -1 & 2
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{cc|c}
2 & -1 \\
-2 & 3 & 2 \\
0 & 1 & 2
\end{array}\right) \xrightarrow{\frac{1}{2} R_{1} \rightarrow R_{1}}\left(\begin{array}{cc|c}
1 & -\frac{1}{2} & 1 \\
-2 & 3 & 2 \\
0 & 1 & 2
\end{array}\right) \\
& \xrightarrow{2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & -\frac{1}{2} & 1 \\
0 & 2 & 4 \\
0 & 1 & 2
\end{array}\right) \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{cc|c}
1 & -1 / 2 & 1 \\
0 & 1 & 2 \\
0 & 2 & 4
\end{array}\right) \rightarrow
\end{aligned}
$$

$$
\xrightarrow{-2 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cc|c}
1 & -1 / 2 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right)
$$

So we have

$$
\begin{aligned}
c_{1}-\frac{1}{2} c_{2} & =1 \\
c_{2} & =2 \\
0 & =0
\end{aligned}
$$

(2) gives $c_{2}=2$
(1)

$$
\text { gives } \begin{aligned}
c_{1} & =1+\frac{1}{2} c_{2} \\
& =1+\frac{1}{2}(2)=2
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{aligned}
\langle 2,2,2\rangle & =2 \cdot\langle 0,-2,2\rangle+2 \cdot\langle 1,3,-1\rangle \\
& =2 \cdot \vec{u}+2 \vec{v}
\end{aligned}
\end{aligned}
$$

Se,
$\langle 2,2,2\rangle$ is in the span of \vec{u} and \vec{v}.
(2) (b)

We want to know if we can write

$$
\langle 3,1,5\rangle=c_{1}\langle 0,-2,2\rangle+c_{2}\langle 1,3,-1\rangle
$$

Let's see.
The above equation becomes:

$$
\begin{aligned}
& \text { The above equation } \\
& \langle 3,1,5\rangle=\left\langle c_{2},-2 c_{1}+3 c_{2}, 2 c_{1}-c_{2}\right\rangle
\end{aligned}
$$

Now equate each component to get

$$
\begin{aligned}
& \begin{array}{l}
3=\begin{array}{c}
3 \\
1=-2 c_{1}+3 c_{2} \\
5=2 c_{1}-c_{2}
\end{array} \\
\square
\end{array} \ni \\
& \left(\begin{array}{cc|c}
0 & 1 & 3 \\
-2 & 3 & 1 \\
2 & -1 & 5
\end{array}\right) \xrightarrow{R_{1} \rightarrow R_{3}}\left(\begin{array}{cc|c}
2 & -1 \\
-2 & 3 & 5 \\
0 & 1 & 3
\end{array}\right) \xrightarrow{\frac{1}{2} R_{1} \rightarrow R_{1}}\left(\begin{array}{cc|c}
1 & -\frac{1}{2} \\
-2 & 3 & \frac{5}{2} \\
1 \\
0 & 1 & 3
\end{array}\right) \\
& \xrightarrow{2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & -\frac{1}{2} & 5 / 2 \\
0 & 2 & 6 \\
0 & 1 & 3
\end{array}\right) \xrightarrow{R_{2} \rightarrow R_{3}}\left(\begin{array}{cc|c}
1 & -1 / 2 & 5 / 2 \\
0 & 1 & 3 \\
0 & 2 & 6
\end{array}\right) \rightarrow
\end{aligned}
$$

$$
\xrightarrow{-2 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cc|c}
1 & -1 / 2 & 5 / 2 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

So we have

$$
\begin{aligned}
c_{1}-\frac{1}{2} c_{2} & =5 / 2 \\
c_{2} & =3 \\
0 & =0
\end{aligned}
$$

(2) gives $c_{2}=3$
(1)

$$
\text { gives } \begin{aligned}
c_{1} & =5 / 2+\frac{1}{2} c_{2} \\
& =5 / 2+\frac{1}{2}(3) \\
& =8 / 2=4
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{aligned}
\langle 2,2,2\rangle & =4 \cdot\langle 0,-2,2\rangle+3 \cdot\langle 1,3,-1\rangle \\
& =4 \vec{u}+3 \vec{v}
\end{aligned}
\end{aligned}
$$

Se,
$\langle 2,2,2\rangle$ is in the span of \vec{u} and \vec{v}.
(2) (c)

We want to know if we can write

$$
\langle 0,4,5\rangle=c_{1}\langle 0,-2,2\rangle+c_{2}\langle 1,3,-1\rangle
$$

Let's see,
The above equation becomes:

$$
\begin{aligned}
& \text { The above equation } \\
& \langle 0,4,5\rangle=\left\langle c_{2},-2 c_{1}+3 c_{2}, 2 c_{1}-c_{2}\right\rangle
\end{aligned}
$$

Now equate each component to get

$$
\xrightarrow{-2 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cc|c}
1 & -1 / 2 & 5 / 2 \\
0 & 1 & 0 \\
0 & 0 & 9
\end{array}\right)
$$

So we have

$$
\begin{align*}
c_{1}-\frac{1}{2} c_{2} & =5 / 2 \tag{1}\\
c_{2} & =0 \tag{2}\\
0 & =9
\end{align*}
$$

This last equation $0=9$ shows that the system has no solutions

Thus, there is no solution to

$$
\begin{aligned}
& \text { Thus, there is no solution to } \\
& \begin{aligned}
\langle 0,4,5\rangle & =c_{1} \cdot\langle 0,-2,2\rangle+c_{2} \cdot\langle 1,3,-1\rangle \\
& =c_{1} \vec{u}+c_{2} \vec{v}
\end{aligned}
\end{aligned}
$$

$\langle 0,4,5\rangle$ is not in the Spar of \vec{u} and \vec{v}.
(2) (d) You can proceed as in the previous problems, but this one is easy to solve.

We have

$$
\begin{aligned}
\langle 0,0,0\rangle & =0 \cdot\langle 0,-2,2\rangle+0 \cdot\langle 1,3,-1\rangle \\
& =0 \cdot \vec{u}+0 \cdot \vec{v}
\end{aligned}
$$

Thus, $\langle 0,0,0\rangle$ is in the span of \vec{u} and \vec{v}.
(3) (a)

We want to know if we can write

$$
\begin{aligned}
3+2 x+x^{2}+2 x^{3} & =c_{1} \vec{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3} \\
& =c_{1}\left(2+x+4 x^{2}\right)+c_{2}\left(1-x+3 x^{2}\right)+c_{3}\left(1+x^{3}\right)
\end{aligned}
$$

This simplifies to

$$
3+2 x+x^{2}+2 x^{3}=\underbrace{\left(2 c_{1}+c_{2}+c_{3}\right)}+\left(c_{1}-c_{2}\right) x+\left(4 c_{1}+3 c_{2}\right) x^{2}
$$

Now equate the coefficients of both sides to get:

$$
\begin{aligned}
& 3=2 c_{1}+c_{2}+c_{3} \\
& 2=c_{1}-c_{2} \\
& 1=4 c_{1}+3 c_{2} \\
& 2=c_{3}
\end{aligned}
$$

Now we must
s see if this system has a solution or not

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
2 & 1 & 1 & 3 \\
1 & -1 & 0 & 2 \\
4 & 3 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 2 \\
2 & 1 & 1 & 3 \\
4 & 3 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& \xrightarrow[-4 R_{1}+R_{3} \rightarrow R_{3}]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 2 \\
0 & 3 & 1 & -1 \\
0 & 7 & 0 & -7 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 2 \\
0 & 7 & 0 & -7 \\
0 & 3 & 1 & -1 \\
0 & 0 & 1 & 2
\end{array}\right) \xrightarrow{\frac{1}{7} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 3 & 1 & -1 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& \xrightarrow{-3 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 2
\end{array}\right) \\
& \xrightarrow{-R_{3}+R_{4} \rightarrow R_{4}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 2 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \longrightarrow
\end{aligned}
$$

The reduced system is

$$
\begin{align*}
c_{1}-c_{2} & =2 \tag{1}\\
c_{2} & =-1 \tag{2}\\
c_{3} & =2 \\
0 & =0
\end{align*}
$$

We get the solution

$$
\begin{aligned}
& c_{3}=2 \\
& c_{2}=-1 \\
& c_{1}=2+c_{2}=2-1=1
\end{aligned}
$$

Thus,

$$
3+2 x+x^{2}+2 x^{3}=1 \cdot \vec{p}_{1}-1 \cdot \vec{p}_{2}+2 \cdot \vec{p}_{3}
$$

So,
$3+2 x+x^{2}+2 x^{3}$ is in the span of $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}$
(3) (b)

We want to know if we can write

$$
\begin{aligned}
1+x & =c_{1} \vec{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3} \\
1+1 \cdot x+0 \cdot x^{2}+0 x^{3} & =c_{1}\left(2+x+4 x^{2}\right)+c_{2}\left(1-x+3 x^{2}\right)+c_{3}\left(1+x^{3}\right)
\end{aligned}
$$

This simplifies to

$$
1+1 \cdot x+0 \cdot x^{2}+0 \cdot x^{3}=\underbrace{\left(2 c_{1}+c_{2}+c_{3}\right)}+\left(c_{1}-c_{2}\right) x+\left(4 c_{1}+3 c_{2}\right) x^{2}
$$

Now equate the coefficients of both sides to get:

$$
\begin{aligned}
& 1=2 c_{1}+c_{2}+c_{3} \\
& 1=c_{1}-c_{2} \\
& 0=4 c_{1}+3 c_{2} \\
& 0=c_{3}
\end{aligned}
$$

Now we must see if this system has a solution or not

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
2 & 1 & 1 & 1 \\
1 & -1 & 0 & 1 \\
4 & 3 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 1 \\
2 & 1 & 1 & 1 \\
4 & 3 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow[-4 R_{1}+R_{3} \rightarrow R_{3}]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 1 \\
0 & 3 & 1 & -1 \\
0 & 7 & 0 & -4 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 1 \\
0 & 7 & 0 & -4 \\
0 & 3 & 1 & -1 \\
0 & 0 & 1 & 0
\end{array}\right) \xrightarrow{\frac{1}{7} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 1 \\
0 & 1 & 0 & -4 / 7 \\
0 & 3 & 1 & -1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow{-3 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 1 \\
0 & 1 & 0 & -4 / 7 \\
0 & 0 & 1 & 5 / 7 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow{-R_{3}+R_{4} \rightarrow R_{4}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & 1 \\
0 & 1 & 0 & -4 / 7 \\
0 & 0 & 1 & 5 / 7 \\
0 & 0 & 0 & -5 / 7
\end{array}\right) \longrightarrow
\end{aligned}
$$

The reduced system is

$$
\left.\begin{array}{rl}
c_{1}-c_{2} & =1 \\
c_{2} & =-4 / 7 \\
& c_{3}
\end{array}\right)=5 / 70
$$

Equation (4) is $0=-5 / 7$.
Which isn't true.
Hence the system has no solutions.

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& 3+2 x+x^{2}+2 x^{3}=c_{1} \cdot \overrightarrow{P_{1}} c_{2} \cdot \overrightarrow{P_{2}}+c_{3} \cdot \vec{P}_{3}
\end{aligned}
$$

Cannot be solved for c_{1}, c_{2}, c_{3}.

So,
$3+2 x+x^{2}+2 x^{3}$ is not in the span of $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}$
(3) (c)

We have that

$$
0=0 \cdot \vec{p}_{1}+0 \cdot \vec{p}_{2}+0 \vec{p}_{3}
$$

Thus, O is in the span of $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}$,
(3) (d)

We want to know if we can write

$$
\begin{aligned}
& 4-x+10 x^{2}=c_{1} \vec{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3} \\
& 4-x+10 x^{2}=c_{1}\left(2+x+4 x^{2}\right)+c_{2}\left(1-x+3 x^{2}\right)+c_{3}\left(1+x^{3}\right)
\end{aligned}
$$

This simplifies to

$$
4-x+10 x^{2}+0 x^{3}=\left(2 c_{1}+c_{2}+c_{3}\right)+\left(c_{1}-c_{2}\right) x+\left(4 c_{1}+3 c_{2}\right) x^{2}
$$

Now equate the coefficients of both sides to get:

$$
\begin{aligned}
4 & =2 c_{1}+c_{2}+c_{3} \\
-1 & =c_{1}-c_{2} \\
10 & =4 c_{1}+3 c_{2} \\
0 & =
\end{aligned}
$$

Now we must see if this system has a solution or not

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
2 & 1 & 1 & 4 \\
1 & -1 & 0 & -1 \\
4 & 3 & 0 & 10 \\
0 & 0 & 1 & 0
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & -1 \\
2 & 1 & 1 & 4 \\
4 & 3 & 0 & 10 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow[-4 R_{1}+R_{3} \rightarrow R_{3}]{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & -1 \\
0 & 3 & 1 & 6 \\
0 & 7 & 0 & 14 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & -1 \\
0 & 7 & 0 & 14 \\
0 & 3 & 1 & 6 \\
0 & 0 & 1 & 0
\end{array}\right) \xrightarrow{\frac{1}{7} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 3 & 1 & 6 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow{-3 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{rrr|r}
1 & -1 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \xrightarrow{-R_{3}+R_{4} \rightarrow R_{4}}\left(\begin{array}{ccc|c}
1 & -1 & 0 & -1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \longrightarrow
\end{aligned}
$$

The reduced system is

$$
\begin{align*}
c_{1}-c_{2} & =-1 \tag{1}\\
c_{2} & =2 \tag{2}\\
c_{3} & =0 \\
0 & =0
\end{align*}
$$

We get the solution

$$
\begin{aligned}
& c_{3}=0 \\
& c_{2}=2 \\
& c_{1}=-1+c_{2}=-1+2=1
\end{aligned}
$$

Thus,

$$
4-x+10 x^{2}=1 \cdot \vec{p}_{1}+2 \cdot \vec{p}_{2}+0 \cdot \vec{p}_{3}
$$

So,
$4-x+10 x^{2}$ is in the span of $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}$
(4) (a) We must solve the equation

$$
c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}=\overrightarrow{0}
$$

This is equivalent to

$$
\begin{aligned}
& \text { s is equivalent to } \\
& c_{1}\langle 1,-1\rangle+c_{2}\langle 2,1\rangle=\langle 0,0\rangle
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { becomes } \\
& \left.\left\langle c_{1}\right)^{-c_{1}}\right\rangle+\left\langle 2 c_{2}, c_{2}\right\rangle=\langle 0,0\rangle
\end{aligned}
$$

which is

$$
\begin{gathered}
c h ~ i s ~ \\
\left\langle c_{1}+2 c_{2},-c_{1}+c_{2}\right\rangle=\langle 0,0\rangle
\end{gathered}
$$

This becomes

$$
\begin{array}{r}
c_{1}+2 c_{2}=0 \\
-c_{1}+c_{2}=0
\end{array}
$$

$$
\begin{aligned}
& \text { olving we get: } \\
& \left(\begin{array}{cc|c}
1 & 2 & 0 \\
-1 & 1 & 0
\end{array}\right) \xrightarrow{R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 3 & 0
\end{array}\right) \xrightarrow{\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 1 & 0
\end{array}\right) \\
&
\end{aligned}
$$

Thus, $\left.\left.\begin{array}{r}c_{1}+z c_{2}=0 \\ c_{2}=0\end{array}\right] \begin{array}{c}(1) \\ \text { (2) }\end{array}\right\}$
(1) 2 (2) $c_{2}=0$

Solving we get:
(1) $c_{1}=-2 c_{2}=-2(0)=0$

Since the only solution to $c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}=\overrightarrow{0}$ is $c_{1}=0, c_{2}=0$ we know that $\vec{u}_{1}=\langle 1,-1\rangle$, $\vec{u}_{2}=\langle 2,1\rangle$ are linearly independent.
(4) (b) Method 1-the long way

We must find the solutions to the equation

$$
c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3}=\overrightarrow{0}
$$

This equation becomes

$$
\begin{aligned}
& \text { his equation becomes } \\
& c_{1}\langle 3,-1\rangle+c_{2}\langle 4,5\rangle+c_{3}\langle-4,7\rangle=\langle 0,0\rangle \\
&
\end{aligned}
$$

This is equivalent to

$$
\begin{aligned}
& c_{1}\left\langle 3_{1}-1 /\right. \\
& \text { his is equivalent to } \\
& \left.\left\langle 3 c_{1}\right)^{-} c_{1}\right\rangle+\left\langle 4 c_{2}, 5 c_{2}\right\rangle+\left\langle-4 c_{3}, 7 c_{3}\right\rangle=\langle 0,0\rangle
\end{aligned}
$$

This is equivalent to

$$
\begin{aligned}
& \text { ais is equivalent to } \\
& \left\langle 3 c_{1}+4 c_{2}-4 c_{3},-c_{1}+5 c_{2}+7 c_{3}\right\rangle=\langle 0,0\rangle
\end{aligned}
$$

Thus,

$$
\begin{array}{r}
3 c_{1}+4 c_{2}-4 c_{3}=0 \\
-c_{1}+5 c_{2}+7 c_{3}=0
\end{array}
$$

Let's solve this system.

$$
\left(\begin{array}{rcc|c}
3 & 4 & -4 & 0 \\
-1 & 5 & 7 & 0
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{rrr|r}
-1 & 5 & 7 & 0 \\
3 & 4 & -4 & 0
\end{array}\right) \longrightarrow
$$

$$
\begin{aligned}
& \xrightarrow{-R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & -5 & -7 & 0 \\
3 & 4 & -4 & 0
\end{array}\right) \\
& \xrightarrow{-3 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -5 & -7 & 0 \\
0 & 19 & 17 & 0
\end{array}\right) \\
& \xrightarrow{\frac{1}{19} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -5 & -7 & 0 \\
0 & 1 & \frac{17}{19} & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
\text { So, we get: } \\
\begin{array}{r}
c_{1}-5 c_{2}-7 c_{3}=0 \\
c_{2}+\frac{17}{19} c_{3}=0
\end{array} & \begin{array}{l}
\text { Leading variables: } c_{1}, c_{2} \\
\text { Free variables: } c_{3}
\end{array} \\
\begin{aligned}
c_{1}=5 c_{2}+7 c_{3} \\
c_{2}=\frac{-17}{19} c_{3}
\end{aligned} \rightarrow \begin{aligned}
c_{3} & =t \\
c_{2} & =\frac{-17}{19} t \\
c_{1} & =5 c_{2}+7 c_{3} \\
& =\frac{-85}{19} t+7 t \\
& =\frac{48}{19} t
\end{aligned} \rightarrow
\end{array}
$$

So,

$$
c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3}=\overrightarrow{0}
$$

can be solved by

$$
\left(\frac{48}{19} t\right) \cdot \vec{u}_{1}-\left(\frac{17}{19} t\right) \cdot \vec{u}_{2}+t \vec{u}_{3}=\overrightarrow{0}
$$

for any t.
In particular, say we set $t=19$,
Then we get:

$$
48 \vec{u}_{1}-17 \vec{u}_{2}+19 \vec{u}_{3}=\overrightarrow{0}
$$

Thus, $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ are linearly dependent.

Method 2-
The dimension of \mathbb{R}^{2} is 2 . short way more than 2 vectors
Thus, if we have more than early dependent in \mathbb{R}^{2} they must be linearly have 3 by a theorem in class. Since we have $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ vectors in a 2 -dimensional are lin. dep.
(4) (c)

Consider the equation

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
$$

The above equation becomes

$$
\begin{aligned}
& \text { Le above equation becomes } \\
& c_{1}\langle-3,0,4\rangle+c_{2}\langle 5,-1,2\rangle+c_{3}\langle 1,1,3\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

Which is equivalent to

$$
\begin{aligned}
& \text { Which is equivalent to } \\
& \left\langle-3 c_{1}, 0,4 c_{1}\right\rangle+\left\langle 5 c_{2},-c_{2}, 2 c_{2}\right\rangle+\left\langle c_{3}, c_{3}, 3 c_{3}\right\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

Which becomes

$$
\begin{aligned}
& \text { Which becomes } \\
& \left\langle-3 c_{1}+5 c_{2}+c_{3},-c_{2}+c_{3}, 4 c_{1}+2 c_{2}+3 c_{3}\right\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

which is equivalent to

$$
\begin{array}{r}
-3 c_{1}+5 c_{2}+c_{3}=0 \\
-c_{2}+c_{3}=0 \\
4 c_{1}+2 c_{2}+3 c_{3}=0
\end{array}
$$

Let's solve this system.

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
-3 & 5 & 1 & 0 \\
0 & -1 & 1 & 0 \\
4 & 2 & 3 & 0
\end{array}\right) \xrightarrow{-\frac{1}{3} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & \frac{-5}{3} & -\frac{1}{3} & 0 \\
0 & -1 & 1 & 0 \\
4 & 2 & 3 & 0
\end{array}\right) \\
& \xrightarrow{-4 R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -5 / 3 & -1 / 3 & 0 \\
0 & -1 & 1 & 0 \\
0 & \frac{26}{3} & \frac{13}{3} & 0
\end{array}\right) \\
& \xrightarrow{-R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & -5 / 3 & -1 / 3 & 0 \\
0 & 1 & -1 & 0 \\
3 R_{3} \rightarrow R_{3} \\
0 & 26 & 13 & 0
\end{array}\right) \\
& \xrightarrow{-26 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -5 / 3 & -1 / 3 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 39 & 0
\end{array}\right) \\
& \xrightarrow{\frac{1}{39} R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -5 / 3 & -1 / 3 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

This becomes

$$
\begin{align*}
c_{1}-\frac{5}{3} c_{2}-\frac{1}{3} c_{3} & =0 \tag{1}\\
c_{2}-c_{3} & =0 \tag{2}\\
c_{3} & =0
\end{align*}
$$

(3) gives $c_{3}=0$
(2) gives $c_{2}=c_{3}=0$
(1) gives $c_{1}=\frac{5}{3} c_{2}+\frac{1}{3} c_{3}=\frac{5}{3} \cdot 0+\frac{1}{3} \cdot 0=0$

Thus, the only solution to \rightarrow

$$
c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3}=\overrightarrow{0}
$$

is $c_{1}=c_{2}=c_{3}=0$.
So, $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ are linearly independent.
(4) (d)

Consider the equation

$$
c_{1} \vec{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3}=\overrightarrow{0}
$$

If the only solution to this equation is $c_{1}=c_{2}=c_{3}=0$, then $\vec{p}_{1}, \overrightarrow{p_{2}}, \overrightarrow{p_{3}}$ are linearly independent. If there che more solutions then $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}$ are linearly dependent. Let's see what happens.
The above equation becomes

$$
\begin{aligned}
& \text { The above equation becomes } \\
& \begin{aligned}
c_{1}\left(3-2 x+x^{2}\right)+c_{2}\left(1+x+x^{2}\right)+c_{3}(6-4 x & \left.+2 x^{2}\right) \\
= & \underbrace{0+0 x+0 x^{2}}_{\overrightarrow{0}}
\end{aligned}
\end{aligned}
$$

Grouping like terms gives

$$
\begin{aligned}
& \text { Grouping like terms gives } \\
& \left(3 c_{1}+c_{2}+6 c_{3}\right)+\left(-2 c_{1}+c_{2}-4 c_{3}\right) x+\left(c_{1}+c_{2}+2 c_{3}\right) \\
& =0+0 x+0 x^{2}
\end{aligned}
$$

Equating coefficients gives

$$
\begin{array}{r}
3 c_{1}+c_{2}+6 c_{3}=0 \\
-2 c_{1}+c_{2}-4 c_{3}=0 \\
c_{1}+c_{2}+2 c_{3}=0
\end{array}
$$

Let's solve this system,

The reduced system is:

$$
\begin{aligned}
& c_{1}+c_{2}+2 c_{3}=0 \\
&=0
\end{aligned}
$$

Leading variables

$$
c_{2}=0
$$ are c_{1}, c_{2}.

$$
0=0
$$ Free variable is C_{3}

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
3 & 1 & 6 & 0 \\
-2 & 1 & -4 & 0 \\
1 & 1 & 2 & 0
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 0 \\
-2 & 1 & -4 & 0 \\
3 & 1 & 6 & 0
\end{array}\right) \\
& \xrightarrow[-3 R_{1}+R_{3} \rightarrow R_{3}]{2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 2 & 0 \\
0 & 3 & 0 & 0 \\
0 & -2 & 0 & 0
\end{array}\right) \\
& \xrightarrow[\frac{-1}{2} R_{3} \rightarrow R_{3}]{\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{lll|l}
1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
& \xrightarrow{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{lll|l}
1 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{align*}
& c_{1}=-c_{2}-2 c_{3} \tag{1}\\
& c_{2}=0
\end{align*}
$$

$C_{3}=t \quad$ set free
5

$$
\text { (2) } \begin{aligned}
c_{2} & =0 \\
1 c_{1} & =-c_{2}-2 c_{3} \\
& =0-2 t=-2 t
\end{aligned}
$$

So,

$$
(-2 t) \vec{p}_{1}+0 \cdot \vec{p}_{2}+t \cdot \vec{p}_{3}=\overrightarrow{0}
$$

for every t.
In partiwlan, for $t=1$ we get

$$
-2 \vec{p}_{1}+0 \vec{p}_{2}+1 \cdot \vec{p}_{3}=\overrightarrow{0}
$$

Thus, $\overrightarrow{P_{1}}, \overrightarrow{P_{2}}, \overrightarrow{P_{3}}$ are linearly dependent.
$(4)(e)$
Consider the equation

$$
c_{1} \vec{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3}=\overrightarrow{0}
$$

which becomes

$$
\begin{aligned}
& \text { which becomes } \\
& c_{1}(1)+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)=\underbrace{0+0 x+0 x^{2}}_{\overrightarrow{0}}
\end{aligned}
$$

Regrouping we get

$$
\begin{aligned}
& \text { Regrouping we get } \\
& (\underbrace{c_{1}+c_{2}+c_{3}})+\underbrace{\left(c_{2}+c_{3}\right) x+c_{3} x^{2}=0+0 x+0 x^{2}}
\end{aligned}
$$

Equating coefficients we get:

$$
\begin{align*}
c_{1}+c_{2}+c_{3} & =0 \tag{1}\\
c_{2}+c_{3} & =0 \tag{2}\\
c_{3} & =0 \tag{3}
\end{align*}
$$

already
reduced

Solving we get
(3) $c_{3}=0$, (2) $c_{2}=-c_{3}=-(0)=0$, (1) $c_{1}=-c_{2}-c_{3}=-(0)-(0)=0$

Since the only solution to $c_{1} \vec{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3}=\overrightarrow{0}$
is $C_{1}=0, c_{2}=0, c_{3}=0$ we know that
$\vec{P}_{1}=1, \vec{P}_{2}=1+x, \vec{P}_{3}=1+x+x^{2}$ are linearly independent.
(5) (a)

We want to check whether or not the vectors $\vec{V}_{1}=\langle 2,2,2\rangle, \vec{v}_{2}=\langle 4,1,2\rangle$, $\vec{V}_{3}=\langle 0,1,1\rangle$ are lineculy independent or linearly dependent in \mathbb{R}^{3}.
We wart to solve

$$
\begin{aligned}
& \text { wart to solve } \\
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
\end{aligned}
$$

for c_{1}, c_{2}, c_{3}.
Suppose,

$$
\begin{aligned}
& \text { Suppose, } \\
& c_{1}\langle 2,2,2\rangle+c_{2}\langle 4,1,2\rangle+c_{3}\langle 0,1,1\rangle=\langle 0,0,0\rangle
\end{aligned}
$$

Then,
which becomes

$$
\begin{aligned}
& 2 c_{1}+4 c_{2}=0 \\
& 2 c_{1}+c_{2}+c_{3}=0 \\
& 2 c_{1}+2 c_{2}+c_{3}=0
\end{aligned}
$$

\leftrightarrows
Let's try to solve this system

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
2 & 4 & 0 & 0 \\
2 & 1 & 1 & 0 \\
2 & 2 & 1 & 0
\end{array}\right) \xrightarrow{\frac{1}{2} R_{1} \rightarrow R_{1}}\left(\begin{array}{lll|l}
1 & 2 & 0 & 0 \\
2 & 1 & 1 & 0 \\
2 & 2 & 1 & 0
\end{array}\right) \\
& \xrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
-2 R_{1}+R_{3} \rightarrow R_{3} \\
0 & -3 & 1 & 0 \\
0 & -2 & 1 & 0
\end{array}\right) \\
& \xrightarrow{-\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
0 & 1 & -1 / 3 & 0 \\
0 & -2 & 1 & 0
\end{array}\right) \\
& \left.\xrightarrow{2 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & 2 & 0 & 0 \\
0 & 1 & -1 / 3 & 0 \\
0 & 0 & 1 / 3 & 0
\end{array}\right) \xrightarrow{3 R_{3} \rightarrow R_{3}} \xrightarrow{1} \begin{array}{lll|l}
1 & 2 & 0 & 0 \\
0 & 1 & -\frac{1}{3} & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

The reduced system is $c_{1}+2 c_{2}=0$ which gives $c_{3}=0$

$$
\begin{array}{rlrl}
c_{2} & =0 & \text { which } & \begin{aligned}
c_{2}-\frac{1}{3} c_{3} & =0 \\
c_{3} & =0
\end{aligned} \\
c_{2} & =\frac{1}{3} c_{3}=\frac{1}{3} \cdot 0=0 \\
c_{1} & =-2 c_{2}=-2 \cdot 0=0 .
\end{array}
$$

Therefore, $\vec{V}_{1} \vec{v}_{2} \vec{v}_{3}$ are linearly independent in \mathbb{R}^{3}.
(5) (b) Same method as in Y(a).

$$
\underbrace{c_{1}\langle 2,-1,3\rangle+c_{2}\langle 4,1,2\rangle+c_{3}\langle 8,-1,8\rangle=\langle 0,0,0\rangle}_{c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \overrightarrow{v_{3}}=\overrightarrow{0}}
$$

We want to salve for c_{1}, c_{2}, c_{3}.
This equation becomes

This becomes

$$
\begin{aligned}
& \text { is becomes } \\
& \left\langle 2 c_{1}+4 c_{2}+8 c_{3},-c_{1}+c_{2}-c_{3}, 3 c_{1}+2 c_{2}+8 c_{3}\right\rangle=\langle 0,0,0\rangle \\
& \text { ins us the system: }
\end{aligned}
$$

which gives us the system:

$$
\begin{aligned}
2 c_{1}+4 c_{2}+8 c_{3} & =0 \\
-c_{1}+c_{2}-c_{3} & =0 \\
3 c_{1}+2 c_{2}+8 c_{3} & =0
\end{aligned}
$$

Let's solve the system

$$
\begin{aligned}
& \text { Let's solve the ry sR } \\
& \left(\begin{array}{ccc|c}
2 & 4 & 8 & 0 \\
-1 & 1 & -1 & 0 \\
3 & 2 & 8 & 0
\end{array}\right) \xrightarrow{\frac{1}{2} R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & 2 & 4 & 0 \\
-1 & 1 & -1 & 0 \\
3 & 2 & 8 & 0
\end{array}\right) \\
& \xrightarrow[\substack{-3 R_{1}+R_{3} \rightarrow R_{3}}]{R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 2 & 4 & 0 \\
0 & 3 & 3 & 0 \\
0 & -4 & -4 & 0
\end{array}\right) \xrightarrow{\longrightarrow}
\end{aligned}
$$

$$
\begin{aligned}
& \xrightarrow{\frac{1}{3} R_{2} \rightarrow R_{2}}\left(\begin{array}{ccc|c}
1 & 2 & 4 & 0 \\
0 & 1 & 1 & 0 \\
0 & -4 & -4 & 0
\end{array}\right) \\
& \xrightarrow{4 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{llc|l}
1 & 2 & 4 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The reduced system is:

$$
\begin{aligned}
c_{1}+2 c_{2}+4 c_{3} & =0 \\
c_{2}+c_{3} & =0 \\
0 & =0
\end{aligned}
$$

This gives:

$$
\begin{align*}
& c_{1}=-2 c_{2}-4 c_{3} \tag{}\\
& c_{2}=-c_{3} \tag{2}\\
& c_{3}=t \tag{3}
\end{align*}
$$

Thus,
(3) $c_{3}=t$
(2) $c_{2}=-c_{3}=-t$
(1) $c_{1}=-2 c_{2}-4 c_{3}=-2(-t)-4 t=-2 t$

So, the solution is:

$$
\begin{array}{ll}
c_{1}=-2 t \\
c_{2}=-t & t \text { can be any } \\
c_{3}=t & \text { real \# }
\end{array}
$$

For example, $t=1$ gives $c_{1}=-2, c_{2}=-1, c_{3}=1$.
Thus, plugging into the original equation gives

$$
\underbrace{1 \cdot\langle 2,-1,3\rangle-1 \cdot\langle 4,1,2\rangle+1 \cdot\langle 8,-1,8\rangle=\langle 0,0,0\rangle}_{1 \cdot \vec{v}_{1}-1 \cdot \vec{v}_{2}+1 \cdot \vec{v}_{3}=\overrightarrow{0}}
$$

Thus, $\vec{v}_{1}=\langle 2,-1,3\rangle, \vec{v}_{2}=\langle 4,1,2\rangle, \vec{v}_{3}=\langle 8,-1,8\rangle$ are linearly dependent.
(6) (a) In problem 5(a) we showed that

$$
\vec{V}_{1}=\langle 2,2,2\rangle, \vec{V}_{2}=\langle 4,1,2\rangle, \vec{V}_{3}=\langle 0,1,1\rangle
$$

are linearly independent.
Since we have 3 linearly independent vectors in a 3 -dimensional space $V=\mathbb{R}^{3}$, by a theorem in class we know $\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}$ must span \mathbb{R}^{3} and thus be a basis for $V=\mathbb{R}^{3}$.
(6) (b) In problem $5(b)$ we showed that $\vec{V}_{1}=\langle 2,-1,3\rangle, \vec{V}_{2}=\langle 4,1,2\rangle, \vec{V}_{3}=\langle 8,-1,8\rangle$ are linearly dependent.
Thus, $\vec{V}_{1}, \vec{V}_{2}, \vec{V}_{3}$ are not a basis for $V=\mathbb{R}^{3}$.
(7) (al Since \mathbb{R}^{3} has dimension 3 , we need 3 vectors to have a basis for \mathbb{R}^{3}. Thus, $\vec{V}_{1}=\langle 4,-1,2\rangle$, $\vec{v}_{2}=\langle-4,10,2\rangle$ are not a basis for \mathbb{R}^{3}.
(7) (b) By problem $4(c)$ the vectors $\vec{V}_{1}=\langle-3,0,4\rangle, \vec{V}_{2}=\langle 5,-1,2\rangle, \vec{V}_{3}=\langle 1,1,3\rangle$ are linearly independent.
Since we have 3 linearly in dependent vectors $\vec{V}_{1}, \vec{V}_{2}, \vec{v}_{3}$ in a vector space \mathbb{R}^{3} of dimension 3 , by a theorem in class they must span \mathbb{R}^{3} and hence are a basis for \mathbb{R}^{3}.
(7) (c) Since \mathbb{R}^{3} has dimension 3 , We need exactly 3 vectors to have a basis for \mathbb{R}^{3}. Thus, $\vec{V}_{1}=\langle-2,0,1\rangle$, $\vec{v}_{2}=\langle 3,2,5\rangle, \vec{v}_{3}=\langle 6,-1,1\rangle, \vec{v}_{4}=\langle 7,0,-2\rangle$ are not a basis for \mathbb{R}^{3}. We have too many vectors.

You could also just directly show that these 4 vectors are linearly dependendent and hence not a basis for \mathbb{R}^{3}.
(8) (a)

The dimension of P_{2} is $2+1=3$,
In problem $4(e)$ we showed that $\vec{p}_{1}=1, \vec{p}_{2}=1+x, \vec{p}_{3}=1+x+x^{2}$
are linearly independent.
Thus, by a theorem in class, since we have 3 linearly independent vectors in a 3 -dimensional space $V=P_{2}$, we know that $\vec{p}_{1}=1, \vec{p}_{2}=1+x, \quad \vec{p}_{3}=1+x+x^{2}$
form a basis for $V=P_{2}$.
(8) (b) Same idea as $8(a)$.

The dimension of P_{2} is $2+1=3$,
Thus, since we have 3 vectors, the vectors

$$
\begin{aligned}
& \text { Thus, since we have } \\
& \vec{p}_{1}=6-x^{2}, \vec{p}_{2}=1+x+4 x^{2}, \vec{p}_{3}=8+2 x+7 x^{2}
\end{aligned}
$$

will be a basis if and only if they are linearly independent.

Consider the equation

$$
c_{1} \vec{p}_{1}+c_{2} \vec{p}_{2}+c_{3} \vec{p}_{3}=\overrightarrow{0}
$$

which becomes

$$
\begin{aligned}
& \text { which becomes } \\
& c_{1}\left(6-x^{2}\right)+c_{2}\left(1+x+4 x^{2}\right)+c_{3}\left(8+2 x+7 x^{2}\right)=0+0 x+0 x^{2}
\end{aligned}
$$

Grouping like terms gives

$$
\begin{aligned}
& \text { Grouping like terms giver } \\
& \begin{array}{l}
\left(6 c_{1}+c_{2}+8 c_{3}\right)+\left(c_{2}+2 c_{3}\right) x+\left(-c_{1}+4 c_{2}+7 c_{3}\right) \\
=0+0 x+0 x^{2}
\end{array}
\end{aligned}
$$

Equating coefficients gives

$$
\begin{array}{r}
6 c_{1}+c_{2}+8 c_{3}=0 \\
c_{2}+2 c_{3}=0 \\
-c_{1}+4 c_{2}+7 c_{3}=0
\end{array}
$$

$*$ Let's solve this system

$$
\begin{aligned}
& \left(\begin{array}{ccc|c}
6 & 1 & 8 & 0 \\
0 & 1 & 2 & 0 \\
-1 & 4 & 7 & 0
\end{array}\right) \xrightarrow{R_{1} \leftrightarrow R_{3}}\left(\begin{array}{ccc|c}
-1 & 4 & 7 & 0 \\
0 & 1 & 2 & 0 \\
6 & 1 & 8 & 0
\end{array}\right) \\
& \xrightarrow{-R_{1} \rightarrow R_{1}}\left(\begin{array}{ccc|c}
1 & -4 & -7 & 0 \\
0 & 1 & 2 & 0 \\
6 & 1 & 8 & 0
\end{array}\right) \\
& \xrightarrow{-6 R_{1}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -4 & -7 & 0 \\
0 & 1 & 2 & 0 \\
0 & 25 & 50 & 0
\end{array}\right) \\
& \xrightarrow{-25 R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{ccc|c}
1 & -4 & -7 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The reduced system is:
(ci) $-4 c_{2}-7 c_{3}=0$ Leading variables: c_{1}, c_{2}
$c_{2}+2 c_{3}=0 \quad$ Free variable: c_{3}

$$
0=0
$$

Solutions:

$$
\begin{aligned}
& c_{3}=t \\
& c_{2}=-2 c_{3}=-2 t \\
& c_{1}=4 c_{2}+7 c_{3}=4(-2 t)+7 t=-t
\end{aligned}
$$

Therefore,

$$
(-t) \vec{p}_{1}+(-2 t) \vec{p}_{2}+(t) \vec{p}_{3}=\overrightarrow{0}
$$

tor any t.
For example, it $t=1$, then

$$
-\vec{p}_{1}-2 \vec{p}_{2}+\vec{p}_{3}=\overrightarrow{0}
$$

Thus, $\vec{P}_{1}, \vec{P}_{2}, \vec{P}_{3}$ we linearly dependent and hence are not a basis for P_{2}.
(9) (a)

Let's show that the vectors $\langle 1,4\rangle,\langle 3,-2\rangle$ are linearly independent.

Consider the equation

$$
\begin{aligned}
& \text { insider the equation } \\
& c_{1}\langle 1,4\rangle+c_{2}\langle 3,-2\rangle=\langle 0,0\rangle \text {. }
\end{aligned}
$$

This becomes

$$
\begin{aligned}
& \text { is becomes } \\
& \left.\left\langle c_{1}+3 c_{2}, 4 c_{1}-2 c_{2}\right\rangle=\langle 0,0\rangle\right\rangle
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& c_{1}+3 c_{2}=0 \\
& 4 c_{1}-2 c_{2}=0
\end{aligned}
$$

Let's solve this.

$$
\begin{aligned}
& \text { Let's solve this. } \\
& \left(\begin{array}{cc|c}
1 & 3 & 0 \\
4 & -2 & 0
\end{array}\right) \xrightarrow{-4 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 3 & 0 \\
0 & -14 & 0
\end{array}\right) \\
& \xrightarrow{-\frac{1}{14} R_{2} \rightarrow R_{2}}\left(\begin{array}{ll|l}
1 & 3 & 0 \\
0 & 1 & 0
\end{array}\right) .
\end{aligned}
$$

So, the reduced system is

$$
\begin{array}{r}
\text { the reduced } \\
c_{1}+3 c_{2}=0 \\
c_{2}=0
\end{array} \Rightarrow \begin{aligned}
& \text { which gives } \\
& c_{2}=0, c_{1}=-3 c_{2}=0 \text {. } . ~ . ~
\end{aligned}
$$

Thus, the only solution is $c_{1}=c_{2}=0$. Thus, $\langle 1,4\rangle,\langle 3,-2\rangle$ we linearly independent. Since \mathbb{R}^{2} has dimension Z, and we have 2 linearly independent vectors, we can conclude that $\langle 1,4\rangle,\langle 3,-2\rangle$ wee a basis for \mathbb{R}^{2}
(9)(b) We must solve

$$
\langle-7,14\rangle=c_{1}\langle 1,4\rangle+c_{2}\langle 3,-2\rangle
$$

Which becomes

$$
\begin{aligned}
& \text { Which becomes } \\
& \langle-7,14\rangle=\left\langle c_{1}+3 c_{2}, 4 c_{1}-2 c_{2}\right\rangle
\end{aligned}
$$

which becomes

$$
\begin{array}{r}
-7=c_{1}+3 c_{2} \\
14=4 c_{1}-2 c_{2}
\end{array}
$$

Let's solve this system:

$$
\begin{aligned}
& \text { Let's solve this system: } \\
& \left(\begin{array}{cc|c}
1 & 3 & -7 \\
4 & -2 & 14
\end{array}\right) \xrightarrow{-4 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 3 & -7 \\
0 & -14 & 42
\end{array}\right)-
\end{aligned}
$$

$$
\xrightarrow{-\frac{1}{14} R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 3 & -7 \\
0 & 1 & -3
\end{array}\right)
$$

So we get:

$$
\begin{aligned}
c_{1}+3 c_{2} & =-7 \\
c_{2} & =-3
\end{aligned}
$$

So,

$$
\begin{aligned}
& c_{2}=-3 \\
& c_{1}=-7-3 c_{2}=-7-3(-3)=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& \langle-7, \mid 4\rangle=2 \cdot\langle 1,4\rangle+(-3)\langle 3,-2\rangle \\
& \langle-7,14\rangle \text { with }
\end{aligned}
$$

Thus,

So, the coordinates of $\langle-7,14\rangle$ with respect to the ordered basis

$$
\begin{aligned}
& \text { respect to the } \\
& \beta=[\langle 1,4\rangle,\langle 3,-2\rangle] \text { are } \\
& {[\langle-7,14\rangle]_{\beta}=\langle 2,-3\rangle}
\end{aligned}
$$

(9) (c)

We want to solve

$$
\begin{aligned}
& \text { We Want to } \\
& \langle 3,-12\rangle=c_{1}\langle 1,4\rangle+c_{2}\langle 3,-2\rangle
\end{aligned}
$$

which becomes

$$
\begin{aligned}
& \text { Which becomes } \\
& \langle 3,-12\rangle=\left\langle c_{1}+3 c_{2}, 4 c_{1}-2 c_{2}\right\rangle \\
&
\end{aligned}
$$

which is equivalent to

$$
\begin{array}{r}
3=c_{1}+3 c_{2} \\
-12=4 c_{1}-2 c_{2}
\end{array}
$$

Let's solve this system:

$$
\begin{aligned}
& \text { Let's solve this system: } \\
& \left(\begin{array}{cc|c}
1 & 3 & 3 \\
4 & -2 & -12
\end{array}\right) \xrightarrow{-4 R_{1}+R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 3 & 3 \\
0 & -14 & -24
\end{array}\right) \\
& \xrightarrow{-\frac{1}{14} R_{2} \rightarrow R_{2}}\left(\begin{array}{cc|c}
1 & 3 & 3 \\
0 & 1 & \frac{12}{7}
\end{array}\right) \longrightarrow \begin{array}{r}
c_{1}+3 c_{2}=3 \\
c_{2}=\frac{12}{7}
\end{array} \\
& \qquad c_{2}=\frac{12}{7}, c_{1}=3-3 c_{2}=3-\frac{36}{7}=-\frac{15}{7}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \langle 3,-12\rangle=\left(\frac{-15}{7}\right) \cdot\langle 1,4\rangle+\left(\frac{12}{7}\right) \cdot\langle 3,-2\rangle
\end{aligned}
$$

So, the coordinates of $\langle 3,-12\rangle$ with respect to the ordered basis

$$
\begin{aligned}
& \text { respect to the ordered } \\
& \beta=[\langle 1,4\rangle,\langle 3,-2\rangle] \text { are } \\
& {[\langle 3,-12\rangle]_{\beta}=\left\langle\frac{-15}{7}, \frac{12}{7}\right\rangle}
\end{aligned}
$$

$(10)(a)$
Let us show that the vectors are linearly independent.
Consider the equation

$$
\begin{aligned}
& \text { Consider the equation } \\
& c_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+c_{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)+c_{3}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)+c_{4}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

This becomes

$$
\left(\begin{array}{ll}
c_{1}+c_{2} & c_{2}-c_{4} \\
c_{2}+c_{4} & c_{1}+c_{3}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Equating coefficients gives

$$
\begin{aligned}
& =0 \\
c_{1}+c_{2}-c_{4} & =0 \\
c_{2}+c_{4} & =0 \\
c_{2} & =0 \\
c_{1}+c_{3} & =0
\end{aligned}
$$

Let's solve this system

$$
\left.\begin{array}{l}
\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right) \xrightarrow{-R_{1}+R_{4} \rightarrow R_{4}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & 0
\end{array}\right) \\
\xrightarrow[R_{2}+R_{4} \rightarrow R_{4}]{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & -1 & 0
\end{array}\right) \\
\xrightarrow{\frac{1}{2} R_{4} \rightarrow R_{4}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right) \\
\xrightarrow[0]{0} 1 \\
0
\end{array}\right)
$$

This becomes: $c_{1}+c_{2}=0$

$$
\begin{aligned}
c_{2}-c_{4} & =0 \\
c_{3}-c_{4} & =0 \\
c_{4} & =0
\end{aligned}
$$

Solving gives $c_{4}=0, c_{3}=c_{4}=0$ $c_{2}=c_{4}=0$, and $c_{1}=-c_{2}=-0=0$, Thus, $c_{1}=c_{2}=c_{3}=c_{4}=0$ is the only solution.

So, the vectors

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

are linearly independent.
Since there are 4 of them and the dimension of $M_{2,2}$ is 4 , they form a basis for $M_{2,2}$,
(10)(b) we need to solve

$$
\begin{aligned}
\left(\begin{array}{cc}
1 & -2 \\
0 & -3
\end{array}\right)=c_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+c_{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) & +c_{3}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& +c_{4}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Which becomes

$$
\left(\begin{array}{cc}
1 & -2 \\
0 & -3
\end{array}\right)=\left(\begin{array}{cc}
c_{1}+c_{2} & c_{2}-c_{4} \\
c_{2}+c_{4} & c_{1}+c_{3}
\end{array}\right)
$$

which is equivalent to

$$
\begin{aligned}
& =1 \\
c_{1}+c_{2}-c_{4} & =-2 \\
c_{2}+c_{4} & =0 \\
c_{2} & =-3 \\
c_{1}+c_{3} & =-3
\end{aligned}
$$

Let's solve this system

$$
\begin{aligned}
& \left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 & -2 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & -3
\end{array}\right) \xrightarrow{-R_{1}+R_{4} \rightarrow R_{4}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 & -2 \\
0 & 1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & -4
\end{array}\right) \\
& \xrightarrow[R_{2}+R_{4} \rightarrow R_{4}]{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 0 & 2 & 2 \\
0 & 0 & 1 & -1 & -6
\end{array}\right) \\
& \xrightarrow{\frac{1}{2} R_{4} \rightarrow R_{4}}\left(\begin{array}{cccc|c|}
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & -1 & -6 \\
0 & 0 & 0 & 1 & 1
\end{array}\right) \\
& \left.\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 2
\end{array}\right) \\
& \hline
\end{aligned}
$$

This becomes: $c_{1}+c_{2}=1$

$$
\begin{aligned}
c_{2} & -c_{4}
\end{aligned}=-2, ~ 子 \begin{aligned}
c_{3} & =-6 \\
c_{4} & =1
\end{aligned}
$$

Solving this system gives

$$
\begin{aligned}
& c_{4}=1, \quad c_{3}=-6+c_{4}=-6+1=-5 \\
& c_{2}=-2+c_{4}=-2+1=-1, \text { and } \\
& c_{1}=1-c_{2}=1-(-1)=2
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \left(\begin{array}{cc}
1 & -2 \\
0 & -3
\end{array}\right)=2 \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-1 \cdot\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)-5 \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& \text { So, } \\
& {\left[\left(\begin{array}{ll}
1 & -2 \\
0 & -3
\end{array}\right)\right]_{\beta}=\left\langle\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right.}
\end{aligned}
$$

(10)(c) We need to solve

$$
\begin{aligned}
\left(\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)=c_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+c_{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) & +c_{3}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& +c_{4}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Which becomes

$$
\left(\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
c_{1}+c_{2} & c_{2}-c_{4} \\
c_{2}+c_{4} & c_{1}+c_{3}
\end{array}\right)
$$

Which is equivalent to

$$
\begin{aligned}
c_{1}+c_{2} & =3 \\
c_{2}-c_{4} & =4 \\
c_{2}+c_{4} & =0 \\
c_{1}+c_{3} & =1
\end{aligned}
$$

Let's solve this system

$$
\left.\begin{array}{l}
\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 & 4 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1
\end{array}\right) \xrightarrow{-R_{1}+R_{4} \rightarrow R_{4}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 & 4 \\
0 & 1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 & -2
\end{array}\right) \\
\xrightarrow[R_{2}+R_{4} \rightarrow R_{4}]{-R_{2}+R_{3} \rightarrow R_{3}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 & 4 \\
0 & 0 & 0 & 2 & -4 \\
0 & 0 & 1 & -1 & 2
\end{array}\right) \\
\xrightarrow{\frac{1}{2} R_{4} \rightarrow R_{4}}\left(\begin{array}{cccc|c}
1 & 1 & 0 & 0 & 3 \\
0 & 1 & 0 & -1 & 4 \\
0 & 0 & 1 & -1 & 2 \\
0 & 0 & 0 & 1 & -2
\end{array}\right) \\
\xrightarrow[0]{0} 1 \\
0
\end{array}\right)
$$

This becomes:

$$
\begin{aligned}
c_{1}+c_{2} & =3 \\
c_{2}-c_{4} & =4 \\
c_{3}-c_{4} & =2 \\
c_{4} & =-2
\end{aligned}
$$

Solving this system gives

$$
\begin{aligned}
& c_{4}=-2, \quad c_{3}=2+c_{4}=2-2=0 \\
& c_{2}=4+c_{4}=4-2=2, \text { and } \\
& c_{1}=3-c_{2}=3-2=1
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \left(\begin{array}{ll}
3 & 4 \\
0 & 1
\end{array}\right)=1 \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& {\left[\left(\begin{array}{ll}
2 \cdot\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) \\
0 & 1
\end{array}\right)\right]_{\beta}^{0} \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)} \\
& \text { So, } \\
& {\left[\begin{array}{ll}
3 & 2 \cdot\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{array}\right.}
\end{aligned}
$$

(11) (a) Let $\beta=\left[1,1+x, 1+x+x^{2}\right]$

We need to solve

$$
1-x+2 x^{2}=c_{1}(1)+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)
$$

which is

$$
\begin{aligned}
& \text { which is } \\
& 1-x+2 x^{2}=\left(c_{1}+c_{2}+c_{3}\right)+\left(c_{2}+c_{3}\right) x+c_{3} x^{2}
\end{aligned}
$$

Equating coefficients gives

We get $c_{3}=2, c_{2}=-1-c_{3}=-1-2=-3$, $c_{1}=1-c_{2}-c_{3}=1-(-3)-2=2$.

$$
\begin{aligned}
& \text { hus, } \\
& 1-x+2 x^{2}=2 \cdot(1)-3 \cdot(1+x)+2 \cdot\left(1+x+x^{2}\right)
\end{aligned}
$$

Thus,

So,

$$
\text { So, }\left[1-x+2 x^{2}\right]_{\beta}=\langle 2,-3,2\rangle
$$

(11) (b) Let $\beta=\left[1,1+x, 1+x+x^{2}\right]$

We need to solve

$$
x=c_{1}(1)+c_{2}(1+x)+c_{3}\left(1+x+x^{2}\right)
$$

which is

$$
\begin{aligned}
& \text { which is } \\
& 0+1 \cdot x+0 \cdot x^{2}=\left(c_{1}+c_{2}+c_{3}\right)+\left(c_{2}+c_{3}\right) x+c_{3} x^{2}
\end{aligned}
$$

Equating coefficients gives

$$
\begin{array}{lr}
0=c_{1}+c_{2}+c_{3} \\
1= & c_{2}+c_{3} \\
0= & c_{3}
\end{array}
$$

(1) This system is already in reduced form, so
$\left.\begin{array}{l}(1) \\ 2 \\ 2 \\ (3)\end{array}\right\}$ in reduced form
we can solve it.

We get $c_{3}=0, c_{2}=1-c_{3}=1-0=1$

$$
c_{1}=0-c_{2}-c_{3}=0-1-0=-1
$$

Thus,

So,

$$
\text { us, } x=-1 \cdot(1)+1 \cdot(1+x)+0 \cdot\left(1+x+x^{2}\right)
$$

$$
[x]_{\beta}=\langle-1,1,0\rangle
$$

(12)

I claim that

$$
\begin{aligned}
& I \text { claim that } \\
& \beta=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
\end{aligned}
$$

is a basis for $M_{2, z}$.
If we show this claim then $M_{2,2}$ has dimension 4 .

$$
B \text { spans } M_{2,2}
$$

Let $\left(\begin{array}{ll}a & b \\ c & \alpha\end{array}\right)$ be an arbitrary element of $M_{2,2}$,

$$
\left.\begin{array}{l}
\text { Let }\left(\begin{array}{ll}
a & d \\
c & d
\end{array}\right) b e \\
\text { Then } \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right) .
$$

Then

Thus, every element of $M_{2,2}$ is in the span of $\beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$.
β is linearly independent
Suppose that

$$
c_{1}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+c_{2}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+c_{3}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+c_{4}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\underbrace{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)}_{\overrightarrow{0}}
$$

Then

$$
\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

So, $c_{1}=c_{2}=c_{3}=c_{4}=0$.
Thus, $\beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ is a linearly independent set

Since β is lin. ind. and spans $M_{2,2}$, β is a basis for $M_{2,2}$. Since β has 4 elements, $M_{2,2}$ has dimension 4 .
(13)

$$
\begin{aligned}
& 13 \\
& P_{n}=\left\{a_{0}+a_{1} \cdot x+a_{2} \cdot x^{2}+\ldots+a_{n} x^{n} \mid a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}\right\} \\
& n\} \text { basis }
\end{aligned}
$$

Claim: $\beta=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis for P_{n}.
β spans P_{n} :
be an arbitrary element of P_{n}. Then

$$
\begin{aligned}
\vec{p}= & a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} \\
& =a_{0} \cdot 1+a_{1} \cdot x+a_{2} \cdot x^{2}+\cdots+a_{n} x^{n}
\end{aligned}
$$

So, \vec{p} is in the span of

$$
\begin{aligned}
& \text { So, } p \text { is in }\left\{1, x, x^{2}, \ldots, x^{n}\right\}
\end{aligned}
$$

β is a linearly independent set of vectors

Suppose that

$$
\begin{aligned}
& \text { Suppose that } \\
& c_{0} \cdot 1+c_{1} \cdot x+c_{2} \cdot x^{2}+\cdots+c_{n} \cdot x^{n}=\underbrace{0+0 x+0 x^{2}+\cdots+0 x^{n}}_{\overrightarrow{0}}
\end{aligned}
$$

Then equating coefficients gives

$$
\begin{aligned}
& \text { Then equating } \\
& c_{0}=0, c_{1}=0, c_{2}=0, \ldots, c_{n}=0 \text {. } \\
& \left.x^{n}\right\} \text { is a }
\end{aligned}
$$

Thus, $\beta=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a linearly independent set of vectors.

From the above, $\beta=\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis for P_{n}. Since β has $n+1$ elements in it, the dimension of P_{n} is $n+1$.

